<span>KE = 1/2mv^2
KE = 1/2(8)4 m/s^2
KE = 4*4
KE = 16 Joules
Kinetic energy would equal 16 J </span>
Answer:
Explanation:
To calculate pH you need to use Henderson-Hasselbalch formula:
pH = pka + log₁₀ ![\frac{[A^-]}{[HA]}](https://tex.z-dn.net/?f=%5Cfrac%7B%5BA%5E-%5D%7D%7B%5BHA%5D%7D)
Where HA is the acid concentration and A⁻ is the conjugate base concentration.
The equilibrium of acetic acid is:
CH₃COOH ⇄ CH₃COO⁻ + H⁺ pka: 4,75
Where <em>CH₃COOH </em>is the acid and <em>CH₃COO⁻ </em>is the conjugate base.
Thus, Henderson-Hasselbalch formula for acetic acid equilibrium is:
pH = 4,75 + log₁₀ ![\frac{[CH_{3}COO^-]}{[CH_{3}COOH]}](https://tex.z-dn.net/?f=%5Cfrac%7B%5BCH_%7B3%7DCOO%5E-%5D%7D%7B%5BCH_%7B3%7DCOOH%5D%7D)
a) The pH is:
pH = 4,75 + log₁₀ ![\frac{[2 mol]}{[2 mol]}](https://tex.z-dn.net/?f=%5Cfrac%7B%5B2%20mol%5D%7D%7B%5B2%20mol%5D%7D)
<em>pH = 4,75</em>
<em></em>
b) The pH is:
pH = 4,75 + log₁₀ ![\frac{[2 mol]}{[1mol]}](https://tex.z-dn.net/?f=%5Cfrac%7B%5B2%20mol%5D%7D%7B%5B1mol%5D%7D)
<em>pH = 5,05</em>
<em></em>
I hope it helps!
Answer:
0.40 L
Explanation:
Calculation of the moles of
as:-
Mass = 51.24 g
Molar mass of
= 171.34 g/mol
The formula for the calculation of moles is shown below:
Thus,

Volume = 1.20 L
The expression for the molarity is:


Thus,
Considering
Given that:
So,
<u>The volume of 0.24925M stock solution added = 0.40 L
</u>
The second one, I could be mistaken though
<h2><u>
Answer:</u></h2>
(These are not rounded to the correct decimal)
130.94 atm
13,266.6 kPa
99,571.4 mmHg
<h2><u>
Explanation:</u></h2>
<u></u>
PV = nRT
V = 245L
P = ?
R = 0.08206 (atm) , 8.314 (kPa) , 62.4 (mmHg)
T = 273.15 + 27 = 300.15K
n = 1302.5 moles
How I found (n).
5.21kg x 1000g/1kg x 1 mole/4.0g = 1302.5 moles
Now, plug all the numbers into the equation.
Pressure in atm = (1302.5)(0.08206)(300.15) / 245 = 130.94 atm (not rounded to the correct decimal)
Pressure in kPa = (1302.5)(8.314)(300.15) / 245 = 13,266.6 kPa (not rounded to the correct decimal)
Pressure in mmHg = (1302.5)(62.4)(300.15) / 245 = 99,571.4 mmHg (not rounded to the correct decimal)