D. Yep, D is the answer, alright.
Answer:
Option B
Explanation:
- For Option A the state is not changing but just has different look now.
- For Option B the state is changing from gas to liquid drops due to cold glass
- For Option C it hasn't changed state as both corn and flower is solid
- For Option D paper and ash are both solids
Therefore our answer must be Option B
Answer:
14 mL
Explanation:
To prepare a solution by a concentrated solution, we must use the equation:
C1xV1 = C2xV2, where <em>C</em> is the concentration, <em>V</em> is the volume, 1 is the initial solution and 2 the final solution.
The final solution must have 2 mL and a concentration of 350 pg/mL, and the initial solution has a concentration of 50 pg/mL.
Then:
50xV1 = 350x2
50xV1 = 700
V1 = 700/50
V1 = 14 mL
HF and NaF - If the right concentrations of aqueous solutions are present, they can produce a buffer solution.
<h3>What are buffer solutions and how do they differ?</h3>
- The two main categories of buffers are acidic buffer solutions and alkaline buffer solutions.
- Acidic buffers are solutions that contain a weak acid and one of its salts and have a pH below 7.
- For instance, a buffer solution with a pH of roughly 4.75 is made of acetic acid and sodium acetate.
<h3>Describe buffer solution via an example.</h3>
- When a weak acid or a weak base is applied in modest amounts, buffer solutions withstand the pH shift.
- A buffer made of a weak acid and its salt is an example.
- It is a solution of acetic acid and sodium acetate CH3COOH + CH3COONa.
learn more about buffer solutions here
<u>brainly.com/question/8676275</u>
#SPJ4