The pressure drop of air in the bed is 14.5 kPa.
<u>Explanation:</u>
To calculate Re:

From the tables air property

Ideal gas law is used to calculate the density:
ρ = 
ρ = 1.97 Kg / 
ρ = 
R =
= 8.2 ×
/ 28.97×
R = 2.83 ×
atm / K Kg
q is expressed in the unit m/s
q = 1.24 m/s
Re =
Re = 2278
The Ergun equation is used when Re > 10,


= 4089.748 Pa/m
ΔP = 4089.748 × 3.66
ΔP = 14.5 kPa
Answer:
overflow rate 20.53 m^3/d/m^2
Detention time 2.34 hr
weir loading 114.06 m^3/d/m
Explanation:
calculation for single clarifier



volume of tank



overflow rate =
Detention time
weir loading
Answer:
a)W=12.62 kJ/mol
b)W=12.59 kJ/mol
Explanation:
At T = 100 °C the second and third virial coefficients are
B = -242.5 cm^3 mol^-1
C = 25200 cm^6 mo1^-2
Now according isothermal work of one mole methyl gas is
W=-
a=
b=
from virial equation

And

a=
b=
Now calculate V1 and V2 at given condition

Substitute given values
= 1 x 10^5 , T = 373.15 and given values of coefficients we get

Solve for V1 by iterative or alternative cubic equation solver we get

Similarly solve for state 2 at P2 = 50 bar we get

Now

a=241.33
b=30780
After performing integration we get work done on the system is
W=12.62 kJ/mol
(b) for Z = 1 + B' P +C' P^2 = PV/RT by performing differential we get
dV=RT(-1/p^2+0+C')dP
Hence work done on the system is

a=
b=
by substituting given limit and P = 1 bar , P2 = 50 bar and T = 373 K we get work
W=12.59 kJ/mol
The work by differ between a and b because the conversion of constant of virial coefficients are valid only for infinite series
Answer:
1200KJ
Explanation:
The heat dissipated in the rotor while coming down from its running speed to zero, is equal to three times its running kinetic energy.
P (rotor-loss) = 3 x K.E
P = 3 x 300 = 900 KJ
After coming to zero, the motor again goes back to running speed of 1175 rpm but in opposite direction. The KE in this case would be;
KE = 300 KJ
Since it is in opposite direction, it will also add up to rotor loss
P ( rotor loss ) = 900 + 300 = 1200 KJ