Answer:
Explanation:
ADT for an 2-D array:
struct array{
int arr[10];
}arrmain[10];
An application that stores an array with 1000 rows and 1000 columns, where less than 10,000 of the array values are non-zero. The two different implementations for such arrays that would be more space efficient than a standard two-dimensional array implementation requiring one million positions are :
1) struct array{
int *p;
}arr[1000];
2) struct array{
int *p;
}arr[1000];
Answer:
(d) all of the above
Explanation:
before cutting the screw threads the operator should lubricate all of the machine parts given in the option that is lead screw and gearbox , the ways and the cross slide and the carriage and half-nuts. we should use lubrication because it reduces the overall system friction and if friction is reduced then heat generated due to friction is also decreases which is beneficial
so option (D) will be correct because we need lubricate in all the given parts
Answer: hope it helps
Explanation:Moving air has a force that will lift kites and balloons up and down. Air is a mixture ... Here is a simple computer simulation that you can use to explore how wings make lift. ... All these dimensions together combine to control the flight of the plane. A pilot ... When the rudder is turned to one side, the airplane moves left or right.
Complete question:
A structural component in the form of a wide plate is to be fabricated from a steel alloy that has a plane strain fracture toughness of 98.9 MPa root m (90 ksi root in.) and a yield strength of 860 MPa (125,000 psi). The flaw size resolution limit of the flaw detection apparatus is 3.0 mm (0.12 in.). If the design stress is one-half of the yield strength and the value of Y is 1.0, determine whether or not a critical flaw for this plate is subject to detection.
Answer:
Since the flaw 17mm is greater than 3 mm the critical flaw for this plate is subject to detection
so that critical flow is subject to detection
Explanation:
We are given:
Plane strain fracture toughness K 
Yield strength Y = 860 MPa
Flaw detection apparatus = 3.0mm (12in)
y = 1.0
Let's use the expression:

We already know
K= design
a = length of surface creak
Since we are to find the length of surface creak, we will make "a" subject of the formula in the expression above.
Therefore
![a= \frac{1}{pi} * [\frac{k}{y*a}]^2](https://tex.z-dn.net/?f=%20a%3D%20%5Cfrac%7B1%7D%7Bpi%7D%20%2A%20%5B%5Cfrac%7Bk%7D%7By%2Aa%7D%5D%5E2%20)
Substituting figures in the expression above, we have:
![= \frac{1}{pi} * [\frac{98.9 MPa \sqrt{m}} {10 * \frac{860MPa}{2}}]^2](https://tex.z-dn.net/?f=%20%3D%20%5Cfrac%7B1%7D%7Bpi%7D%20%2A%20%5B%5Cfrac%7B98.9%20MPa%20%5Csqrt%7Bm%7D%7D%20%7B10%20%2A%20%5Cfrac%7B860MPa%7D%7B2%7D%7D%5D%5E2)
= 0.0168 m
= 17mm
Therefore, since the flaw 17mm > 3 mm the critical flow is subject to detection