1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Dovator [93]
3 years ago
10

If block A of the pulley system is moving downward at 6 ft>s while block C is moving down at 18 ft>s, determine the relati

ve velocity of block B with respect to C.

Engineering
1 answer:
kramer3 years ago
3 0

Answer:

Explanation:

The detailed steps and appropriate calculation with analysis is as shown in the attachment.

You might be interested in
3.8 LAB - Select lesson schedule with multiple joins
dem82 [27]

Answer:

The database has three tables for tracking horse-riding lessons: Horse with columns: ID - primary key; RegisteredName; Breed; Height; BirthDate.

Explanation:

4 0
2 years ago
A company purchases a certain kind of electronic device from a manufacturer. The manufacturer indicates that the defective rate
olga2289 [7]

Answer:

1) The probability of at least 1 defective is approximately 45.621%

2) The probability that there will be exactly 3 shipments each containing at least 1 defective device among the 20 devices that are tested from the shipment is approximately 16.0212%

Explanation:

The given parameters are;

The defective rate of the device = 3%

Therefore, the probability that a selected device will be defective, p = 3/100

The probability of at least one defective item in 20 items inspected is given by binomial theorem as follows;

The probability that a device is mot defective, q = 1 - p = 1 - 3/100 = 97/100 = 0.97

The probability of 0 defective in 20 = ₂₀C₀(0.03)⁰·(0.97)²⁰ ≈ 0.543794342927

The probability of at least 1 = 1 - The probability of 0 defective in 20

∴ The probability of at least 1 = 1 - 0.543794342927 = 0.45621

The probability of at least 1 defective ≈ 0.45621 = 45.621%

2) The probability of at least 1 defective in a shipment, p ≈ 0.45621

Therefore, the probability of not exactly 1 defective = q = 1 - p

∴ q ≈ 1 - 0.45621 = 0.54379

The probability of exactly 3 shipment with at least 1 defective, P(Exactly 3 with at least 1) is given as follows;

P(Exactly 3 with at least 1) = ₁₀C₃(0.45621)³(0.54379)⁷ ≈ 0.160212

Therefore, the probability that there will be exactly 3 shipments each containing at least 1 defective device among the 20 devices that are tested from the shipment is 16.0212%

4 0
3 years ago
A 4140 steel shaft, heat-treated to a minimum yield strength of 100 ksi, has a diameter of 1 7/16 in. The shaft rotates at 600 r
velikii [3]
Answer:










Explanation:



4140-40 I’d pick wood




I hope this helps! :)
4 0
3 years ago
Read 2 more answers
A specimen of a 4340 steel alloy with a plane strain fracture toughness of 54.8 Mpa root m is exposed to a stress of 1030 MPa. W
cupoosta [38]

Answer:

It will not  experience fracture when it is exposed to a stress of 1030 MPa.

Explanation:

Given

Klc = 54.8 MPa √m

a = 0.5 mm = 0.5*10⁻³m

Y = 1.0

This problem asks us to determine whether or not the 4340 steel alloy specimen will fracture when exposed to a stress of 1030 MPa, given the values of <em>KIc</em>, <em>Y</em>, and the largest value of <em>a</em> in the material. This requires that we solve for <em>σc</em> from the following equation:

<em>σc = KIc / (Y*√(π*a))</em>

Thus

σc = 54.8 MPa √m / (1.0*√(π*0.5*10⁻³m))

⇒ σc = 1382.67 MPa > 1030 MPa

Therefore, the fracture will not occur because this specimen can handle a stress of 1382.67 MPa before experience fracture.

3 0
3 years ago
A closed, rigid tank is filled with a gas modeled as an ideal gas, initially at 27°C and a gage pressure of 300 kPa. If the gas
ch4aika [34]

Answer:

gauge pressure is 133 kPa

Explanation:

given data

initial temperature T1 = 27°C = 300 K

gauge pressure = 300 kPa = 300 × 10³ Pa

atmospheric pressure = 1 atm

final temperature T2 = 77°C = 350 K

to find out

final pressure

solution

we know that gauge pressure is = absolute pressure - atmospheric pressure so

P (gauge ) = 300 × 10³ Pa - 1 × 10^{5} Pa

P (gauge ) = 2 × 10^{5} Pa

so from idea gas equation

\frac{P1*V1}{T1} = \frac{P2*V2}{T2}   ................1

so {P2} = \frac{P1*T2}{T1}

{P2} = \frac{2*10^5*350}{300}

P2 = 2.33 × 10^{5} Pa

so gauge pressure = absolute pressure - atmospheric pressure

gauge pressure = 2.33 × 10^{5}  - 1.0 × 10^{5}

gauge pressure = 1.33 × 10^{5} Pa

so gauge pressure is 133 kPa

4 0
3 years ago
Other questions:
  • An alloy has a yield strength of 818 MPa and an elastic modulus of 104 GPa. Calculate the modulus of resilience for this alloy [
    13·1 answer
  • The reverse water-gas shift (RWGS) reaction is an equimolar reaction between CO2 and H2 to form CO and H2O. Assume CO2 associati
    10·1 answer
  • A stainless-steel specimen from the same material characterized up above, was formed into a rectangular cross-section of dimensi
    9·1 answer
  • Consider a drainage basin having 60% soil group A and 40% soil group B. Five years ago the land use pattern in the basin was ½ w
    12·1 answer
  • 1. Asphyxiation is a hazard posed by Compressed Natural Gas (CNG) vehicles and can be detected when you notice
    7·1 answer
  • HI! If you love the art that is good. My teacher Mrs. Armstrong is the best paintings ever year. Come to Mountain View Elementar
    10·2 answers
  • Plateau Creek carries 5.0 m^3 /s of water with a selenium (Se) concentration of 0.0015 mg/L. A farmer withdraws water at a certa
    12·1 answer
  • Use superpositions find​
    8·1 answer
  • Imagine a cantilever beam fixed at one end with a mass = m and a length = L. If this beam is subject to an inertial force and a
    6·1 answer
  • Complex machines are defined by
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!