Answer:
That's a really nice question sadly I don't know the answer I'm replying to you cuz I'm tryna get points so... Sorry
When a slender member is subjected to an axial compressive load, it may fail by a ... Consider a column of length, L, cross-sectional Moment of Inertia, I, having Young's Modulus, E. Both ends are pinned, meaning they can freely rotate ... p2EI L2 ... scr, is the Euler Buckling Load divided by the columns cross-sectional area
Answer with Explanation:
The crown will be pure if it's specific gravity is 19.3
Now by definition of specific gravity it is the ratio between the weight of an object to the weight of water of equal volume
Since it is given that the weight of the crown is 11.8 N we need to find it's volume
Now According to Archimedes principle when the crown is immersed into water the water shall exert a force in upwards direction on the crown with a magnitude equaling to weight of the water displaced by the crown
Mathematically this is the difference between the weight of the crown in air and weight when immersed in water
Thus Buoyant force is 
Now by Archimedes principle This force equals in magnitude to the weight of water of same volume as of the crown
Thus the specific gravity of the crown equals

As we see that the specific gravity of the crown material is less than that of pure gold hence we conclude that it is impure.
'Capturing a photon by<em> isomerization and rhodopsin </em>of retinal' is the first step necessary for initiating the visual transduction cascade in rods.
Visual transduction refers to the process in the eye where absorption of light in the 'retina' is translated into electrical signals that then reach the brain. It is correct to state that visual transduction is the photochemical reaction that takes place when light or photon is converted to an electric signal in the retina. The visual pigment in the rods, called rhodopsin, is a membrane protein placed in the outer segments of the rods.
When initiating the visual transduction cascade in rods the first vital step is to capture a photon by<em> isomerization and rhodopsin</em> of retinal'.
You can leran more about visual transduction at
brainly.com/question/13798113
#SPJ4
To solve this problem we will apply the concepts related to translational torque, angular torque and the kinematic equations of angular movement with which we will find the angular displacement of the system.
Translational torque can be defined as,

Here,
F = Force
d = Distance which the force is applied


At the same time the angular torque is defined as the product between the moment of inertia and the angular acceleration, so using the previous value of the found torque, and with the moment of inertia given by the statement, we would have that the angular acceleration is




Now the angular displacement is

Here
= Initial angular velocity
t = time
Angular acceleration
= Angular displacement
Time is given as 1 minute, in seconds will be

There is not initial angular velocity, then

Replacing,


The question neglects the effect of gravitational force.