we are given
![f(x)=e^x sin(x)](https://tex.z-dn.net/?f=f%28x%29%3De%5Ex%20sin%28x%29)
(a)
Firstly, we will find critical numbers
so, we will find derivative
![f'(x)=e^x sin(x)+e^x cos(x)](https://tex.z-dn.net/?f=f%27%28x%29%3De%5Ex%20sin%28x%29%2Be%5Ex%20cos%28x%29)
now, we can set it to 0
and then we can solve for x
we get
![x=\frac{3\pi }{4} ,x=\frac{7\pi }{4}](https://tex.z-dn.net/?f=x%3D%5Cfrac%7B3%5Cpi%20%7D%7B4%7D%20%2Cx%3D%5Cfrac%7B7%5Cpi%20%7D%7B4%7D)
now, we can draw a number line and then locate these values
and then we can find sign of derivative on each intervals
increasing intervals:
![[0,\frac{3\pi}{4} )U(\frac{7\pi}{4} , 2\pi]](https://tex.z-dn.net/?f=%5B0%2C%5Cfrac%7B3%5Cpi%7D%7B4%7D%20%29U%28%5Cfrac%7B7%5Cpi%7D%7B4%7D%20%2C%202%5Cpi%5D)
Decreasing interval:
![(\frac{3\pi}{4} ,\frac{7\pi}{4} )](https://tex.z-dn.net/?f=%28%5Cfrac%7B3%5Cpi%7D%7B4%7D%20%2C%5Cfrac%7B7%5Cpi%7D%7B4%7D%20%29)
(b)
Local maxima:
It is the value of x where function changes from increasing to decreasing
so, local maxima is at
![x=\frac{3\pi}{4}](https://tex.z-dn.net/?f=x%3D%5Cfrac%7B3%5Cpi%7D%7B4%7D)
Local minima:
It is the value of x where function changes from decreasing to increasing
so, local minima is at
![x=\frac{7\pi}{4}](https://tex.z-dn.net/?f=x%3D%5Cfrac%7B7%5Cpi%7D%7B4%7D)
now, we will plug critical numbers and end values into original function
and we get
At x=0:
![f(0)=e^0 sin(0)](https://tex.z-dn.net/?f=f%280%29%3De%5E0%20sin%280%29)
![f(0)=0](https://tex.z-dn.net/?f=f%280%29%3D0)
At
:
![f(\frac{3\pi}{4})=e^{\frac{3\pi}{4}} sin(\frac{3\pi}{4})](https://tex.z-dn.net/?f=f%28%5Cfrac%7B3%5Cpi%7D%7B4%7D%29%3De%5E%7B%5Cfrac%7B3%5Cpi%7D%7B4%7D%7D%20sin%28%5Cfrac%7B3%5Cpi%7D%7B4%7D%29)
![f(\frac{3\pi}{4})=7.46049](https://tex.z-dn.net/?f=f%28%5Cfrac%7B3%5Cpi%7D%7B4%7D%29%3D7.46049)
At
:
![f(\frac{7\pi}{4})=e^{\frac{7\pi}{4}} sin(\frac{7\pi}{4})](https://tex.z-dn.net/?f=f%28%5Cfrac%7B7%5Cpi%7D%7B4%7D%29%3De%5E%7B%5Cfrac%7B7%5Cpi%7D%7B4%7D%7D%20sin%28%5Cfrac%7B7%5Cpi%7D%7B4%7D%29)
![f(\frac{7\pi}{4})=-172.640](https://tex.z-dn.net/?f=f%28%5Cfrac%7B7%5Cpi%7D%7B4%7D%29%3D-172.640)
At
:
![f(2\pi)=e^{2\pi} sin(2\pi )](https://tex.z-dn.net/?f=f%282%5Cpi%29%3De%5E%7B2%5Cpi%7D%20sin%282%5Cpi%20%29)
![f(2\pi )=0](https://tex.z-dn.net/?f=f%282%5Cpi%20%29%3D0)
Global maxima:
It is the largest value among them
so, we get
![f(\frac{3\pi}{4})=7.46049](https://tex.z-dn.net/?f=f%28%5Cfrac%7B3%5Cpi%7D%7B4%7D%29%3D7.46049)
Global minima:
It is the largest value among them
so, we get
![f(\frac{7\pi}{4})=-172.640](https://tex.z-dn.net/?f=f%28%5Cfrac%7B7%5Cpi%7D%7B4%7D%29%3D-172.640)
(c)
now, we can find second derivative
![f'(x)=e^x sin(x)+e^x cos(x)](https://tex.z-dn.net/?f=f%27%28x%29%3De%5Ex%20sin%28x%29%2Be%5Ex%20cos%28x%29)
![f''(x)=\frac{d}{dx}\left(e^x\sin \left(x\right)+e^x\cos \left(x\right)\right)](https://tex.z-dn.net/?f=f%27%27%28x%29%3D%5Cfrac%7Bd%7D%7Bdx%7D%5Cleft%28e%5Ex%5Csin%20%5Cleft%28x%5Cright%29%2Be%5Ex%5Ccos%20%5Cleft%28x%5Cright%29%5Cright%29)
![=\frac{d}{dx}\left(e^x\sin \left(x\right)\right)+\frac{d}{dx}\left(e^x\cos \left(x\right)\right)](https://tex.z-dn.net/?f=%3D%5Cfrac%7Bd%7D%7Bdx%7D%5Cleft%28e%5Ex%5Csin%20%5Cleft%28x%5Cright%29%5Cright%29%2B%5Cfrac%7Bd%7D%7Bdx%7D%5Cleft%28e%5Ex%5Ccos%20%5Cleft%28x%5Cright%29%5Cright%29)
![=e^x\sin \left(x\right)+\cos \left(x\right)e^x+e^x\cos \left(x\right)-e^x\sin \left(x\right)](https://tex.z-dn.net/?f=%3De%5Ex%5Csin%20%5Cleft%28x%5Cright%29%2B%5Ccos%20%5Cleft%28x%5Cright%29e%5Ex%2Be%5Ex%5Ccos%20%5Cleft%28x%5Cright%29-e%5Ex%5Csin%20%5Cleft%28x%5Cright%29)
![f''(x)=2e^x\cos \left(x\right)](https://tex.z-dn.net/?f=f%27%27%28x%29%3D2e%5Ex%5Ccos%20%5Cleft%28x%5Cright%29)
now, we can set it to 0
and then we can solve for x
![f''(x)=2e^x\cos \left(x\right)=0](https://tex.z-dn.net/?f=f%27%27%28x%29%3D2e%5Ex%5Ccos%20%5Cleft%28x%5Cright%29%3D0)
so, we get
![x=\frac{\pi}{2} ,x=\frac{3\pi}{2}](https://tex.z-dn.net/?f=x%3D%5Cfrac%7B%5Cpi%7D%7B2%7D%20%2Cx%3D%5Cfrac%7B3%5Cpi%7D%7B2%7D)
now, we can draw number line and locate these values
and then we can find sign of second derivative on each intervals
concave up intervals:
![[0,\frac{\pi}{2})U(\frac{3\pi}{2}, 2\pi]](https://tex.z-dn.net/?f=%5B0%2C%5Cfrac%7B%5Cpi%7D%7B2%7D%29U%28%5Cfrac%7B3%5Cpi%7D%7B2%7D%2C%202%5Cpi%5D)
Concave down intervals:
![(\frac{\pi}{2} ,\frac{3\pi}{2})](https://tex.z-dn.net/?f=%28%5Cfrac%7B%5Cpi%7D%7B2%7D%20%2C%5Cfrac%7B3%5Cpi%7D%7B2%7D%29)
Turning points:
All values of x for which concavity changes
so, we get turning points at
![x=\frac{\pi}{2} ,x=\frac{3\pi}{2}](https://tex.z-dn.net/?f=x%3D%5Cfrac%7B%5Cpi%7D%7B2%7D%20%2Cx%3D%5Cfrac%7B3%5Cpi%7D%7B2%7D)