Hi there!
The question gives us the quadratic equation , and it tells us to solve it using the quadratic formula, which goes as . However, we must first find the values of a, b, and c. The official quadratic equation goes as , which matches the format of the given quadratic equation. Hence, the value of a would be 1, the value of b would be 5, and the value of c would be 3. Now, just plug it back into the quadratic equation and simplify to get the zeros of the equation.
x = \frac{-b \pm \sqrt{b^2 - 4ac} }{2a}
x = \frac{-(5) \pm \sqrt{(5)^2 - 4(1)(3)} }{2(1)}
x = \frac{-5 \pm \sqrt{25 - 12} }{2}
x = \frac{-5 \pm \sqrt{13} }{2}
x = \frac{-5 \pm 3.61 }{2}
x = \frac{-5 + 3.61 }{2}, x = \frac{-5 - 3.61 }{2}
x=-0.695 \ \textgreater \ \ \textgreater \ -0.7, x= -4.305 \ \textgreater \ \ \textgreater \ x=-4.31
Therefore, the solutions to the quadratic equation are x = -0.7 and x = -4.31. Hope this helped and have a phenomenal day!
Your answer is 4.31
Answer:
39/4
Step-by-step explanation:
Step 1 - Setup
First, we set up the mixed number 9 3/4 with different colors, so it is easy to follow along:
9
3
4
Step 2 - Multiply
Next, we multiply the whole number by the denominator.
9 x 4 = 36
Step 3 - Add Numerator
Then, we add the numerator to the answer we got in Step 2.
36 + 3 = 39
Step 4 - Solution
Finally, to get the solution, we keep the original denominator and make the numerator the answer from Step 3. Thus, 9 3/4 as an improper fraction is:
39
4
<h3>
Answer: 16 square units</h3>
Let x be the height of the parallelogram. Right now it's unknown, but we can solve for it using the pythagorean theorem. Focus on the right triangle. It has legs a = 3 and b = x, with hypotenuse c = 5
a^2 + b^2 = c^2
3^2 + x^2 = 5^2
9 + x^2 = 25
x^2 = 25-9
x^2 = 16
x = sqrt(16)
x = 4
This is a 3-4-5 right triangle.
The height of the parallelogram is 4 units.
We have enough info to find the area of the parallelogram
Area of parallelogram = base*height
Area of parallelogram = 4*4
Area of parallelogram = 16 square units
Coincidentally, the base and height are the same, which isn't always going to be the case. The base is visually shown as the '4' in the diagram. The height is the dashed line, which also happens to be 4 units long.
Answer:
Yes.
Step-by-step explanation:
The two triangles are <em>similar</em> because they have:
- a common angle (90°)
- corresponding sides with lengths in a 3:1 ratio
All you need to do is to slide the smaller triangle into the larger one so that a small angle and one of its sides coincide.
Then the hypotenuses of each triangle will lie along the same line.