The mole<span> is the </span>unit of measurement<span> in the </span>International System of Units<span> (SI) for </span>amount of substance<span>. It is defined as the </span>amount<span> of a </span>chemical substance<span> that contains as many representative particles, e.g., </span>atoms<span>, </span>molecules<span>, </span>ions<span>, </span>electrons<span>, or </span>photons<span>, as there are atoms in 12 </span>grams<span> of </span>carbon-12<span> (</span>12<span>C), the </span>isotope<span> of </span>carbon<span> with </span>relative atomic mass<span> 12 by definition.
so to solve the moles, divide the mass with molar mass
moles = 4177 g / </span><span>133.34 g/mol
moles = 31.33 moles</span>
The salt and water are a homogeneous mixture but when salt dissolves in the water system is called a solution of salt and water.
<h3>What is a mixture? </h3>
A mixture is defined as the combination of two or more substances that are not chemically bonded together.
There are two types of mixture which include:
- Homogeneous (uniform composition) and
When salt is added to the ice water system, it lowers the freezing point of the ice water thereby forming a homogenous mixture of water and salt.
The dissolution of salt in ice water leads to the formation of salt and water solution.
Learn more about mixture here:
brainly.com/question/10677519
Answer:
A cation is formed when a metal ion loses a valence electron while an anion is formed when a non-metal gains a valence electron. They both achieve a more stable electronic configuration through this exchange.
We do a heat balance to solve this:
(m cp ΔT)water = -(m cp ΔT)metal
100.8 (4.18) (27 - 22) = -65 (cp)(27-100)
cp = 100.8 (4.18) (27 - 22) / (-65 (27-100))
cp = 0.44 J/ (°C × g)
The specific heat of the metal is 0.44 J/ (°C × g)
Correct answers:
<span>Nuclear fission and fusion both affect the nucleus of an atom.
</span><span>The final products of fission and fusion are elements that are different than the original.
</span><span>Fission occurs mostly with elements heavier than lead on the periodic table.</span>