Answer:
1) ![\left[\begin{array}{c}x&y\end{array}\right] =\left[\begin{array}{c}\dfrac{1}{2}&&\dfrac{3}{4}\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7Dx%26y%5Cend%7Barray%7D%5Cright%5D%20%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7D%5Cdfrac%7B1%7D%7B2%7D%26%26%5Cdfrac%7B3%7D%7B4%7D%5Cend%7Barray%7D%5Cright%5D)
2) ![\dfrac{1}{26}\left[\begin{array}{cc}2&6\\-3&4\end{array}\right]](https://tex.z-dn.net/?f=%5Cdfrac%7B1%7D%7B26%7D%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D2%266%5C%5C-3%264%5Cend%7Barray%7D%5Cright%5D)
Step-by-step explanation:
1) The system of equations can be written as the augmented matrix ...
![\left[\begin{array}{cc|c}2&-4&-2\\3&2&3\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7Cc%7D2%26-4%26-2%5C%5C3%262%263%5Cend%7Barray%7D%5Cright%5D)
Dividing the first row by 2 makes it ...
![\left[\begin{array}{cc|c}1&-2&-1\\3&2&3\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7Cc%7D1%26-2%26-1%5C%5C3%262%263%5Cend%7Barray%7D%5Cright%5D)
Then subtracting 3 times the first row from the second gives ...
![\left[\begin{array}{cc|c}1&-2&-1\\0&8&6\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7Cc%7D1%26-2%26-1%5C%5C0%268%266%5Cend%7Barray%7D%5Cright%5D)
And dividing the second row by 8 puts 1s on the diagonal.
![\left[\begin{array}{cc|c}1&-2&-1\\0&1&\dfrac{3}{4}\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7Cc%7D1%26-2%26-1%5C%5C0%261%26%5Cdfrac%7B3%7D%7B4%7D%5Cend%7Barray%7D%5Cright%5D)
This row echelon form tells us ...
y = 3/4
x -2y = -1
So, substituting for y in the second of these equations, we find ...
x = -1 +2(3/4) = 1/2
The solution is (x, y) = (1/2, 3/4).
__
2) For a 2×2 matrix, finding the inverse is not so difficult by hand. The inverse is the transpose of the cofactor matrix divided by the determinant.
The cofactor matrix is ...
![\left[\begin{array}{cc}2&-3\\6&4\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D2%26-3%5C%5C6%264%5Cend%7Barray%7D%5Cright%5D)
and its transpose is ...
![\left[\begin{array}{cc}2&6\\-3&4\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D2%266%5C%5C-3%264%5Cend%7Barray%7D%5Cright%5D)
The determinant is the product of diagonal elements less the product of off-diagonal elements, so is (4)(2) -(3)(-6) = 8+18 = 26.
Dividing the transpose of the cofactor matrix by this gives the inverse ...
![\dfrac{1}{26}\left[\begin{array}{cc}2&6\\-3&4\end{array}\right]](https://tex.z-dn.net/?f=%5Cdfrac%7B1%7D%7B26%7D%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D2%266%5C%5C-3%264%5Cend%7Barray%7D%5Cright%5D)