Answer:
no, not proportional
Step-by-step explanation:
set up a proportion and see if cross-products are equal:
8/3 = 14/6
cross-multiply:
(8)(6) ≠ (14)(3)
48 ≠ 42
Answer:
4
Step-by-step explanation:
A common misconception in statistics is confusing correlation with causation. If two events are correlated, it merely means that they share the same behaviour over time, but it doesn't imply in any way that those event are related by a common cause, or even worse, that one implies the other.
You can find several (even humorous) counter examples online. For example, if you plot the number of reported pirates assault against the global temperature in the last years, you'll se that temperature is rising (unfortunately...) while pirates are almost disappearing.
One could observe this strong negative correlation and claim that hotter climate has solved the pirate issue. Of course this is a joke, but it explains why you shouldn't confuse correlation with causation.
Answer:
d. 15
Step-by-step explanation:
Putting the values in the shift 2 function
X1 + X2 ≥ 15
where x1= 13, and x2=2
13+12≥ 15
15≥ 15
At least 15 workers must be assigned to the shift 2.
The LP model questions require that the constraints are satisfied.
The constraint for the shift 2 is that the number of workers must be equal or greater than 15
This can be solved using other constraint functions e.g
Putting X4= 0 in
X1 + X4 ≥ 12
gives
X1 ≥ 12
Now Putting the value X1 ≥ 12 in shift 2 constraint
X1 + X2 ≥ 15
12+ 2≥ 15
14 ≥ 15
this does not satisfy the condition so this is wrong.
Now from
X2 + X3 ≥ 16
Putting X3= 14
X2 + 14 ≥ 16
gives
X2 ≥ 2
Putting these in the shift 2
X1 + X2 ≥ 15
13+2 ≥ 15
15 ≥ 15
Which gives the same result as above.
Check picture for working out