1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Elenna [48]
3 years ago
12

Let $$X_1, X_2, ...X_n$$ be uniformly distributed on the interval 0 to a. Recall that the maximum likelihood estimator of a is $

$a = max(X_i)$$. Argue intuitively why aˆ cannot be an unbiased estimator for a. b. Suppose that E(a) = na/(n + 1). Is it reasonable that aˆ consistently underestimates a? Show that the bias in the estimator approaches zero as n gets large. c. Propose an unbiased estimator for a. d. Let $$Y = max(X_i)$$. Use the fact that Y ≤ y if and only if each $$X_i ≤ y$$ to derive the cumulative distribution function of Y . Then show that the probability density function of Y is. $$f(y) = [ny^n - ^1/a^n 0$$, 0 ≤ y ≤ a otherwise, Use this result to show that the maximum likelihood estimator for a is biased. e. We have two unbiased estimators for a: the moment estimator $$a_1=2\overline{\mbox{X}}$$ and $$a_2 = [(n + 1)/n] max(X_i)$$, where max $$(X_i)$$ is the largest observation in a random sample of size n. It can be shown that $$V(a_1) = a^2/(3n)$$ and that $$V(a_2) = a^2/[n(n + 2)]$$. Show that if n > 1, aˆ2 is a better estimator than aˆ. In what sense is it a better estimator of a?
Mathematics
1 answer:
Solnce55 [7]3 years ago
8 0

Answer:

a) \hat a = max(X_i)  

For this case the value for \hat a is always smaller than the value of a, assuming X_i \sim Unif[0,a] So then for this case it cannot be unbiased because an unbiased estimator satisfy this property:

E(a) - a= 0 and that's not our case.

b) E(\hat a) - a= \frac{na}{n+1} - a = \frac{na -an -a}{n+1}= \frac{-a}{n+1}

Since is a negative value we can conclude that underestimate the real value a.

\lim_{ n \to\infty} -\frac{1}{n+1}= 0

c) P(Y \leq y) = P(max(X_i) \leq y) = P(X_1 \leq y, X_2 \leq y, ..., X_n\leq y)

And assuming independence we have this:

P(Y \leq y) = P(X_1 \leq y) P(X_2 \leq y) .... P(X_n \leq y) = [P(X_1 \leq y)]^n = (\frac{y}{a})^n

f_Y (Y) = n (\frac{y}{a})^{n-1} * \frac{1}{a}= \frac{n}{a^n} y^{n-1} , y \in [0,a]

e) On this case we see that the estimator \hat a_1 is better than \hat a_2 and the reason why is because:

V(\hat a_1) > V(\hat a_2)

\frac{a^2}{3n}> \frac{a^2}{n(n+2)}

n(n+2) = n^2 + 2n > n +2n = 3n and that's satisfied for n>1.

Step-by-step explanation:

Part a

For this case we are assuming X_1, X_2 , ..., X_n \sim U(0,a)

And we are are ssuming the following estimator:

\hat a = max(X_i)  

For this case the value for \hat a is always smaller than the value of a, assuming X_i \sim Unif[0,a] So then for this case it cannot be unbiased because an unbiased estimator satisfy this property:

E(a) - a= 0 and that's not our case.

Part b

For this case we assume that the estimator is given by:

E(\hat a) = \frac{na}{n+1}

And using the definition of bias we have this:

E(\hat a) - a= \frac{na}{n+1} - a = \frac{na -an -a}{n+1}= \frac{-a}{n+1}

Since is a negative value we can conclude that underestimate the real value a.

And when we take the limit when n tend to infinity we got that the bias tend to 0.

\lim_{ n \to\infty} -\frac{1}{n+1}= 0

Part c

For this case we the followng random variable Y = max (X_i) and we can find the cumulative distribution function like this:

P(Y \leq y) = P(max(X_i) \leq y) = P(X_1 \leq y, X_2 \leq y, ..., X_n\leq y)

And assuming independence we have this:

P(Y \leq y) = P(X_1 \leq y) P(X_2 \leq y) .... P(X_n \leq y) = [P(X_1 \leq y)]^n = (\frac{y}{a})^n

Since all the random variables have the same distribution.  

Now we can find the density function derivating the distribution function like this:

f_Y (Y) = n (\frac{y}{a})^{n-1} * \frac{1}{a}= \frac{n}{a^n} y^{n-1} , y \in [0,a]

Now we can find the expected value for the random variable Y and we got this:

E(Y) = \int_{0}^a \frac{n}{a^n} y^n dy = \frac{n}{a^n} \frac{a^{n+1}}{n+1}= \frac{an}{n+1}

And the bias is given by:

E(Y)-a=\frac{an}{n+1} -a=\frac{an-an-a}{n+1}= -\frac{a}{n+1}

And again since the bias is not 0 we have a biased estimator.

Part e

For this case we have two estimators with the following variances:

V(\hat a_1) = \frac{a^2}{3n}

V(\hat a_2) = \frac{a^2}{n(n+2)}

On this case we see that the estimator \hat a_1 is better than \hat a_2 and the reason why is because:

V(\hat a_1) > V(\hat a_2)

\frac{a^2}{3n}> \frac{a^2}{n(n+2)}

n(n+2) = n^2 + 2n > n +2n = 3n and that's satisfied for n>1.

You might be interested in
3/4 of 84 contestants guessed incorrectly how many contestants guessed incorrectly
adelina 88 [10]
First figure out how many people are 1/4 of 84 by dividing 84 by 4 =21. Then multiply 21 by 3 to figure out how many people are 3/4 of 84 =63. 63 people guessed incorrectly and 21 people guessed correctly:)
8 0
3 years ago
Read 2 more answers
PLS Help !!!!
Serhud [2]

Answer:

W, I believe

Step-by-step explanation:

5 0
3 years ago
Read 2 more answers
"Which choice shows the graph of y= 1/3x+4?
cestrela7 [59]

Answer:

Step-by-step explanation:

2 plus t

5 0
3 years ago
Read 2 more answers
What percent of 132 is 40
SVEN [57.7K]

3.3 hope this helps thanks






6 0
3 years ago
What is the equation from the table?
sp2606 [1]

Answer:

D.

Step-by-step explanation:

It just is hard to explain but I had the same question.

8 0
3 years ago
Read 2 more answers
Other questions:
  • Please help me out with this
    11·1 answer
  • Explain how to use the break apart strategy to find 495+254
    13·1 answer
  • What line model matches the expression
    11·1 answer
  • Reflect points
    13·2 answers
  • the cost of old boiler is £775 per year,the new one is £1850 ,the cost of using a new boiler will be 1/5 less than the cost of u
    9·1 answer
  • If 16x = 1/64, find the value of x
    5·1 answer
  • PLZ HELP ILL MARK BRAINLEST
    10·1 answer
  • I help in the next 5 min also if you could explain how to sove it would help a ton!!!
    10·1 answer
  • Y is directly proportional to x2<br> If y = 12 when X = 2 find<br> X when y = 300
    9·2 answers
  • The seventh grade students are having an end-of-year party in the schoal
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!