let's bear in mind that sin(θ) in this case is positive, that happens only in the I and II Quadrants, where the cosine/adjacent are positive and negative respectively.
![\bf sin(\theta )=\cfrac{\stackrel{opposite}{5}}{\stackrel{hypotenuse}{6}}\qquad \impliedby \textit{let's find the \underline{adjacent side}} \\\\\\ \textit{using the pythagorean theorem} \\\\ c^2=a^2+b^2\implies \pm\sqrt{c^2-b^2}=a \qquad \begin{cases} c=hypotenuse\\ a=adjacent\\ b=opposite\\ \end{cases} \\\\\\ \pm\sqrt{6^2-5^2}=a\implies \pm\sqrt{36-25}\implies \pm \sqrt{11}=a \\\\[-0.35em] ~\dotfill](https://tex.z-dn.net/?f=%5Cbf%20sin%28%5Ctheta%20%29%3D%5Ccfrac%7B%5Cstackrel%7Bopposite%7D%7B5%7D%7D%7B%5Cstackrel%7Bhypotenuse%7D%7B6%7D%7D%5Cqquad%20%5Cimpliedby%20%5Ctextit%7Blet%27s%20find%20the%20%5Cunderline%7Badjacent%20side%7D%7D%20%5C%5C%5C%5C%5C%5C%20%5Ctextit%7Busing%20the%20pythagorean%20theorem%7D%20%5C%5C%5C%5C%20c%5E2%3Da%5E2%2Bb%5E2%5Cimplies%20%5Cpm%5Csqrt%7Bc%5E2-b%5E2%7D%3Da%20%5Cqquad%20%5Cbegin%7Bcases%7D%20c%3Dhypotenuse%5C%5C%20a%3Dadjacent%5C%5C%20b%3Dopposite%5C%5C%20%5Cend%7Bcases%7D%20%5C%5C%5C%5C%5C%5C%20%5Cpm%5Csqrt%7B6%5E2-5%5E2%7D%3Da%5Cimplies%20%5Cpm%5Csqrt%7B36-25%7D%5Cimplies%20%5Cpm%20%5Csqrt%7B11%7D%3Da%20%5C%5C%5C%5C%5B-0.35em%5D%20~%5Cdotfill)

Answer:
131 1/2 miles per gallon
Step-by-step explanation:
52 1/2 × 2 1/2 = 131 1/2
Answer:
He would need to walk the dog 6 more times because 8 times 11 is 88 and if he has already walked the dog 5 times you would subtract that from 11 to get 6. So the answer would be 6
Step-by-step explanation:
8·11= 88
11-5= 6
Let the number be x and 2x-5 from the above given condition
x+2x-5=70
or
3x=75 s0 x=25
Hence, the number are 25 and 45
Answer:
= −11.2
Step-by-step explanation:
64.8=6(m+22)
We move all terms to the left:
64.8-(6(m+22))=0
We calculate terms in parentheses: -(6(m+22)), so:
6(m+22)
We multiply parentheses
6m+132
Back to the equation:
-(6m+132)
We get rid of parentheses
-6m-132+64.8=0
We add all the numbers together, and all the variables
-6m-67.2=0
We move all terms containing m to the left, all other terms to the right
-6m=67.2