Inertia is the property of an object that basically describes its resistance to change its state of motion.
For instance, if an object is still, inertia describes the "attitude" of the object to stay still (a force should be applied in order to move it). Similarly, if an object is moving by uniform motion (with constant speed), inertia refers to the "attitude" of the object to keep its uniform motion (again, a force should be applied to the object in order to change this state of motion).
We solve this using special
relativity. Special relativity actually places the relativistic mass to be the
rest mass factored by a constant "gamma". The gamma is equal to 1/sqrt
(1 - (v/c)^2). <span>
We want a ratio of 3000000 to 1, or 3 million to 1.
</span>
<span>Therefore:
3E6 = 1/sqrt (1 - (v/c)^2)
1 - (v/c)^2 = (0.000000333)^2
0.99999999999999 = (v/c)^2
0.99999999999999 = v/c
<span>v= 99.999999999999% of the speed of light ~ speed of light
<span>v = 3 x 10^8 m/s</span></span></span>
Answer:
I = 5000 A
Explanation:
We will use Ampere's Law to calculate the current:

where,
B = Magnetic Field Strength = 0.1 mT = 1 x 10⁻⁴ T
μ = Permeability of Free Space = 4π x 10⁻⁷ N/A²
I = Current = ?
r = radius = 10 m
Therefore,

<u>I = 5000 A</u>
The mountains can and will block airflow from higher pressure systems that come in from a coast and won't combine to nake storms