1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
tatyana61 [14]
4 years ago
7

The 100-m dash can be run by the best sprinters in 10.0 s. A 66-kg sprinter accelerates uniformly for the first 45 m to reach to

p speed, which he maintains for the remaining 55 m. (a) What is the average horizontal component of force exerted on his feet by the ground during acceleration? (b) What is the speed of the sprinter over the last 55 m of the race (i.e., his top speed)?
Physics
1 answer:
irga5000 [103]4 years ago
3 0

(a) 154.5 N

Let's divide the motion of the sprinter in two parts:

- In the first part, he starts with velocity u = 0 and accelerates with constant acceleration a_1 for a total time t_1 During this part of the motion, he covers a distance equal to s_1 = 45 m, until he finally reaches a velocity of v_1 = u + a_1t_1. We can use the following suvat equation:

s_1 = u t_1 + \frac{1}{2}a_1t_1^2

which reduces to

s_1 = \frac{1}{2}a_1 t_1^2 (1)

since u = 0.

- In the second part, he continues with constant speed v_1 = a_1 t_1, covering a distance of d_2 = 55 m in a time t_2. This part of the motion is a uniform motion, so we can use the equation

s_2 = v_1 t_2 = a_1 t_1 t_2 (2)

We also know that the total time is 10.0 s, so

t_1 + t_2 = 10.0 s\\t_2 = (10.0-t_1)

Therefore substituting into the 2nd equation

s_2 = a_1 t_1 (10-t_1)

From eq.(1) we find

a_1 = \frac{2s_1}{t_1^2} (3)

And substituting into (2)

s_2 = \frac{2s_1}{t_1^2}t_1 (10-t_1)=\frac{2s_1}{t_1}(10-t_1)=\frac{20 s_1}{t_1}-2s_1

Solving for t,

s_2+2s_1=\frac{20 s_1}{t_1}\\t_1 = \frac{20s_1}{s_2+2s_1}=\frac{20(45)}{55+2(45)}=6.2 s

So from (3) we find the acceleration in the first phase:

a_1 = \frac{2(45)}{(6.2)^2}=2.34 m/s^2

And so the average force exerted on the sprinter is

F=ma=(66 kg)(2.34 m/s^2)=154.5 N

b) 14.5 m/s

The speed of the sprinter remains constant during the last 55 m of motion, so we can just use the suvat equation

v_1 = u +a_1 t_1

where we have

u = 0

a_1  =2.34 m/s^2 is the acceleration

t_1 = 6.2 s is the time of the first part

Solving the equation,

v_1 = 0 +(2.34)(6.2)=14.5 m/s

You might be interested in
A boy throws a ball into the air at 10.2 m/s. Assuming that only gravity acts on the ball, how high does it rise, in m?
ozzi
Answer: 5.31 meters

Explanation: Use conservation of energy. Initial energy equals final energy. Initially, there is only kinetic energy (because height = 0 initially). At the end, kinetic energy equals 0 because at max height, there is max potential energy and the ball stops moving for a split second.

mgh = .5mv^2
Masses cancel out
gh = .5v^2
(9.8)(h) = .5(10.2^2)
Solve for h. h = 5.31 meters
5 0
3 years ago
A cart is pulled by a force of 250 N at an angle of 35° above the horizontal. The cart accelerates at 1.4 m/s2. The free-body di
Vikki [24]

Answer:

Mass of the cart = 146 kg

Explanation:

A cart is pulled by a force of 250 N at an angle of 35° above the horizontal.

The cart accelerates at 1.4 m/s² horizontally.

Horizontal force = Fcosθ = 250 cos35° = 204.79N

We have F = ma

Substituting

        204.79 = m x 1.4  

              m = 146.28 kg = 146 kg

Mass of the cart = 146 kg

3 0
3 years ago
The acceleration due to gravity on the moon is about 1/6 of the acceleration due to gravity on the earth. A net force F acts hor
uysha [10]

Answer:

c.a_m

Explanation:

We are given that

Acceleration due to gravity on the moon=a_m

Acceleration due to gravity on the earth=a_e

g_m=\frac{1}{6}g_e

Net force due to am on an object on moon=F_{net}=ma_m

There is no friction and no drag force and there is no gravity involved

Then, the force acting on an object on earth=F=ma_e

F=F_{net}(given)

ma_m=ma_e

a_e=a_m

Hence, option c is true.

3 0
3 years ago
A mass weight of 120N is hung from two strings. what is the tension?
kramer
The weight should be shared between the two string equally. Therefore, tension in each string, T is;

T = 120 N/2 = 60 N
7 0
3 years ago
Read 2 more answers
How does the height from which you drop the ball relate to the height that the ball bounces back up?
Stels [109]
The higher you go the more potential energy there is, and the lower it is the more kinetic energy there is, so the more kinetic energy there is the higher the ball will bounce.
7 0
3 years ago
Other questions:
  • A pitcher throws a baseball as shown in the diagram below.
    9·2 answers
  • Suppose you want to move a big rock in your yard. It is about waist high and 4 feet long, has a volume of 1.2 m3 and a density o
    9·1 answer
  • The change of phase from a solid to a gas is called _____. evaporation melting sublimation vaporization
    10·2 answers
  • A 9.30 kg mass is moving at a constant velocity of 4.00 m/s.
    13·1 answer
  • A uniform brick of length 26 m is placed over the edge of a horizontal surface. (x=26 m)
    12·1 answer
  • Two solid spheres, one of radius R and mass M, the other of radius 2R and mass 8M, roll down an incline. They start together fro
    14·1 answer
  • How are energy and distance up the ramp related
    15·1 answer
  • Felipe believes that whenever the Moon is in the position that is shown from above (top view) in Diagram A, the Moon always look
    9·1 answer
  • The voltage drop across R1 is
    6·1 answer
  • Suppose the ski patrol lowers a rescue sled and victim, having a total mass of 90.0 kg, down a p slope at constant speed, as sho
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!