Answer:
6.48L
Explanation:
Given parameters:
V₁ = 2.5L
P₁ = 105 kPa
P₂ = 40.5 kPa
Condition: constant temperature
Unknown:
V₂ = ?
Solution:
To solve this problem, we are considering pressure and volume relationship. This should be solved by applying the knowledge of Boyle's law.
The law states that "The volume of fixed mass of a gas varies inversely as the pressure changes if the temperature is constant".
Mathematically;
P₁V₁ = P₂V₂
where P and V are pressure and volume, 1 and 2 represents initial and final states.
Substitute to find the V₂;
105 x 2.5 = 40.5 x V₂
Solving for V₂ gives 6.48L
Answer:
21.6 g
Explanation:
The reaction that takes place is:
First we<u> convert the given masses of both reactants into moles</u>, using their <em>respective molar masses</em>:
- 9.6 g CH₄ ÷ 16 g/mol = 0.6 mol CH₄
- 64.9 g O₂ ÷ 32 g/mol = 2.03 mol O₂
0.6 moles of CH₄ would react completely with (2 * 0.6) 1.2 moles of O₂. As there are more O₂ moles than required, O₂ is the reactant in excess and CH₄ is the limiting reactant.
Now we <u>calculate how many moles of water are produced</u>, using the <em>number of moles of the limiting reactant</em>:
- 0.6 mol CH₄ *
= 1.2 mol H₂O
Finally we<u> convert 1.2 moles of water into grams</u>, using its <em>molar mass</em>:
- 1.2 mol * 18 g/mol = 21.6 g
gasoline is the chemical that is coming out of the air
Answer:
C
Explanation:
The 3 goes to every term in the molecule
3 NHO3
So its
3x1 N's
3x1 H's
3x3 O's