The absolute value of the difference in electronegativity (ΔEN) of two bonded atoms provides a rough measure of the polarity to be expected in the bond and, thus, the bond type. When the difference is very small or zero, the bond is covalent and nonpolar. When it is large, the bond is polar covalent or ionic.
Answer:
A. m C5H12 = 108.23 g
B. m F2 = 547.142 g
C. m Ca(CN)2 = 71.85 g
Explanation:
- mass (m) = mol (n) × molecular weigth (Mw)
∴ Mw C5H12 = ((12.011)(5)) + ((1.008)(12)) = 72.151 g/mol C5H12
∴ Mw F2 = (18.998)(2) = 37.996 g/mol F2
∴ Mw = Ca(CN)2 = 40.078+((12.011+14.007)(2)) = 92.114 g/mol Ca(CN)2
A. m C5H12 = ( 1.50 mol)×(72.151 g/mol) = 108.23 g C5H12
B. m F2 = (14.4 mol)×(37.996 g/mol) = 547.142 g F2
C. m Ca(CN)2 = (0.780 mol)×(92.114 g/mol) = 71.85 g Ca(CN)2
I believe it is 6ml because you do the doseage times the ml and mutiply it by 1
The balanced equation for the reaction is as follows
Na₂CO₃ + 2HCl --> 2NaCl + CO₂ + H₂O
stoichiometry of Na₂CO₃ to HCl is 1:2
number of Na₂CO₃ moles reacted = molarity x volume
number of Na₂CO₃ moles = 0.100 mol/L x 0.750 L = 0.0750 mol
according to molar ratio of 1:2
1 mol of Na₂CO₃ reacts with 2 mol of HCl
then 0.0750 mol of Na₂CO₃ mol reacts with - 2 x 0.0750 = 0.150 mol
molarity of given HCl solution is 1.00 mol/L
molarity is defined as the number of moles of solute in 1 L of solution
there are 1.00 mol in 1 L of solution
therefore there are 0.150 mol in - 0.150 mol / 1.00 mol/L = 0.150 L
volume of HCl required is 0.150 L