0,35 kmol/m³ = 0,35 mol/dm³ = 0,35 mol/L
175 mL = 0,175 L
*-*-*-*-*-*-*-*-*-*-*-*
C = n/V
n = 0,35×0,175
n = 0,06125 mol
mCa(NO₃)₂: 40+(14×2)+(16×6) = 164 g/mol
1 mol --------- 164g
0,06125 ---- X
X = 10,045g
To prepare 175 mL of 0,35M solution, add 10,045g of calcium nitrate and add water to a volume of 175ml.
In a non-flowering plant, the embryo is in spores found in the stem, and in a flowering plant, the embryo is in seeds found in the flower.
(don’t count on my answer but I think it might be this one and I apologize if you get it wrong)
Answer:eeded to change the temperature of one gram of a substance one degree ... iron(specific heat=0.12 cal/g C) and a cup of water both have the same temperature. ... If you drop a hot rock into a pail of water,the temperature of the rock and the water ... Therefore, water molecules have higher specific heat capacity than metals
Explanation:
Answer:
Ionic Bonding: The formation of an Ionic bond is the result of the transfer of one or more electrons from a metal onto a non-metal.
Covalent Bonding: Bonding between non-metals consists of two electrons shared between two atoms.
Explanation:
Answer:-
Water is highly ordered. In water each oxygen atom is connected to others around it through hydrogen bonding via bridging hydrogen atoms. When a salt like NaCl is dissolved, some of these Hydrogen bonds break.
When a salt like NaCl dissolves in water, the NaCl breaks in to ions Na+ and Cl-.
The water molecules now surround these ions.
The slightly negative oxygen end of water molecule gets near the Na+, while the slightly positive Hydrogen of water molecule gets near the Cl-.
So before salt sample dissolve, the water molecules were highly ordered due to hydrogen bonding. Now after salt dissolve there is a decrease in order and thus an increase in disorder of the water molecules.
Due to increase in disorder, entropy which is a measure of disorder increases. Since entropy increases, delta S for the process is positive.