...6 and 10 are roots, so x – 6 and x – 10 are factors.
y = a(x – 6)(x – 10).....plug in the point (8, 2) and solve for a:
2 = a(8 – 6)(8 – 10)
2 = –4a
a = –1/2
...y = (–1/2)(x – 6)(x – 10)
...y = (–1/2)(x² – 16x + 60)
...y = (–x²/2) + 8x – 30 <<<------Answer, or:
...y = (–1/2)(x – 8)² + 2 <<<------Answer
Answer:
488 = r
Step-by-step explanation:
362 = -126 + r
126 +126
----------------
488 = r
I am joyous to assist you anytime.
Answer:
An example of when a continuity correction factor can be used is in finding the number of tails in 50 tosses of a coin within a given range .
and continuity correction factor is used when a continuous probability distribution is used on a discrete probability distribution
Step-by-step explanation:
An example of when a continuity correction factor can be used is in finding the number of tails in 50 tosses of a coin within a given range .
continuity correction factor is used when a continuous probability distribution is used on a discrete probability distribution, continuity correction factor creates an adjustment on a discrete distribution while using a continuous distribution
Answer:
30x-5
Step-by-step explanation:
25-5=20
20-5=15
-5 -10 -15 -20 -25
25 20 15 10 5
I hope that helped you
I’m pretty sure the answer is 30!