Depends. Are you talking about a mathematical 4th dimension (in which there is infinite dimensions) or some sort of etheral dimension (in which there is no scientific evidence for)
If you mean the first then yes. But it depends how these beings exist. From our understanding we only can theorize shapes in 4-d and if we assume that there is only one universe these "beings" arleady exist and thus any message in 3-d would be sent to them like a shadow ("flat").
If they exist in a alternate "plane" then you would need some method to transverse this plan and if u did, then we would easily be able to communicate, but we would at first sound like a wild animal. They either would ignore us, not understand or perceive us, or they would attempt to send back a signal (essential they are ET's)
IF you mean the second then thats some mystic stuff and its pretty creepy (although a fun read for me :P)
<span />
If an object's speed changes, or if it changes the direction it's moving in,
then there must be forces acting on it. There is no other way for any of
these things to happen.
Once in a while, there may be <em><u>a group</u></em> of forces (two or more) acting on
an object, and the group of forces may turn out to be "balanced". When
that happens, the object's speed will remain constant, and ... if the speed
is not zero ... it will continue moving in a straight line. In that case, it's not
possible to tell by looking at it whether there are any forces acting on it.
The short answer (and the long one for that matter) is physical properties of chemicals. If you are being marked by a machine, likely the answer is going to be physical properties.
Answer: Diagram B
Explanation:
A free body diagram shows the forces acting on an object in a certain scenario.
In this scenario there are two forces acting on the carrot: the Tension force (Ft) from the rope that the carrot is hanging from and Gravitational force(Fg) which is pulling the carrot to the Earth.
The diagram depicting this is diagram B.
Answer:
Explanation:
λ=c x²
c = λ / x²
λ is mass / length
so its dimensional formula is ML⁻¹
x is length so its dimensional formula is L
c = λ / x²
= ML⁻¹ / L²
= ML⁻³
B )
We shall find out the mass of the rod with the help of given expression of mass per unit length and equate it with given mass that is M
The mass in the rod is symmetrically distributed on both side of middle point.
we consider a small strip of rod of length dx at x distance away from middle point
its mass dm = λdx = cx² dx
By integrating it from -L to +L we can calculate mass of whole rod , that is
M = ∫cx² dx
= [c x³ / 3] from -L/2 to +L/2
= c/3 [ L³/8 + L³/8]
M = c L³/12
c = 12 M L⁻³
C ) Moment of inertia of rod
∫dmx²
= ∫λdxx²
= ∫cx²dxx²
= ∫cx⁴dx
= c x⁵ / 5 from - L/2 to L/2
= c / 5 ( L⁵/ 32 +L⁵/ 32)
= (2c / 160)L⁵
= (c / 80) L⁵
= (12 M L⁻³/80)L⁵
= 3/20 ML²
=
=