Answer:
The answer is "a, c and b"
Explanation:
- Its total block power is equal to the amount of potential energy and kinetic energy.
- Because the original block expansion in all situations will be the same, its potential power in all cases is the same.
- Because the block in the first case has no initial speed, the block has zero film energy.
- For both the second example, it also has the
velocity, but the kinetic energy is higher among the three because its potential and kinetic energy are higher. - While over the last case the kinetic speed is greater and lower than in the first case, the total energy is also higher than the first lower than that of the second.
- The greater the amplitude was its greater the total energy, therefore lower the second, during the first case the higher the amplitude.
Answer:
rotates faster
Explanation:
A huge rotating cloud of particles in space gravitate together to form an increasingly dense ball As it shrinks in size, the cloud rotates faster. Because Angular momentum is conserved, so when it shrinks the moment of inertia decreases, then angular speed must increase. So it rotates fast.
From the given problem, a limit on the depression of a building is placed at 20 centimeters. To solve how many floors can be safely added, a quantity of how many cm will a building sink for each floor that is added is needed. Unfortunately, it is not found anywhere in the problem. However, we can provide a formula to solve for the depression. This is as follows:
Building depression < 20 cm
Building depression = (cm depression per floor) * (no. of floors)
There are various properties which are exhibited by substances like physical properties,chemical properties,magnetic properties,electric properties etc.
By simply observing the substance we can not get any idea about the property of a substance.One has to conduct various tests in order to reach at his or her conclusion. The scientific tests provides a better understanding about the nature of substance and the changes that happen under various conditions and parameter.