Answer:
15.3 sorry if i got it wrong
Explanation:
Answer:
1.3m/s
Explanation:
Data given,
Mass,m=1.0kg,
Amplitude,A=0.10m,
Frequency,f=2.0Hz.
From the equation of a simple harmonic motion, the displacement of the object at a given time is define as

we can express the velocity by the derivative of the displacement,
Hence

at equilibrium, the velocity becomes

Hence if we substitute values we arrive at

Answer:
4. All of the above I think, not to sure about 1. but the rest are right so im like 90.99999 percent sure good luck
Answer: Force applied by trampoline = 778.5 N
<em>Note: The question is incomplete.</em>
<em>The complete question is : What force does a trampoline have to apply to a 45.0 kg gymnast to accelerate her straight up at 7.50 m/s^2? note that the answer is independent of the velocity of the gymnast. She can be moving either up or down or be stationary.
</em>
Explanation:
The total required the trampoline by the trampoline = net force accelerating the gymnast upwards + force of gravity on her.
= (m * a) + (m * g)
= m ( a + g)
= 45 kg ( 7.50 * 9.80) m/s²
Force applied by trampoline = 778.5 N