25% is equal to 100/25=1/4
We can substitute this into an equation to get the total number of wells where n can be equal to the total number of wells.
1/4*n=50
n/4=50
n=50*4
n=200
The total number of wells that were drilled was 200.
Both problems give you a function in the second column and the x-values. To find out the values of a through f, you need to plug in those x-values into the function and simplify!
You need to know three exponent rules to simplify these expressions:
1)
The
negative exponent rule says that when a
base has a negative exponent, flip the base onto the other side of the
fraction to make it into a positive exponent. For example,

.
2)
Raising a fraction to a power is the same as separately raising the numerator and denominator to that power. For example,

.
3) The
zero exponent rule<span> says that any number
raised to zero is 1. For example,

.
</span>
Back to the Problem:
Problem 1
The x-values are in the left column. The title of the right column tells you that the function is

. The x-values are:
<span>
1) x = 0</span>Plug this into

to find letter a:

<span>
2) x = 2</span>Plug this into

to find letter b:

<span>
3) x = 4</span>Plug this into

to find letter c:

<span>
Problem 2
</span>The x-values are in the left column. The title of the right column tells you that the function is

. The x-values are:
<span>
1) x = 0</span>Plug this into

to find letter d:

<span>
2) x = 2
</span>Plug this into

to find letter e:

<span>
3) x = 4
</span>Plug this into

to find letter f:

<span>
-------
Answers: a = 1b = </span>

<span>
c = </span>
d = 1e =
f =
You can graph it but cant answer it because there is two variables so try and change it to slope intercept form do you know how ???????
Answer:
(9x²)²
Step-by-step explanation:
Given the expression 81x⁴, to write the expression as a square of a monomial, first we will assign a variable to the expression.
y = 81x⁴
Then we take the square root of both sides of the expression
√y = √81x⁴
y^½ = √81 × √x⁴
y^½ = 9x²
Squaring both sides of the resulting equation to get y back
(y^½)² = (9x²)²
y = (9x²)²
The expression as a square of a monomial is (9x²)²