0.1 M x 0.5L = 0.05 mols HCl.
Adding 25 mL 2M NaOH is
2M x 0.025 L = 0.05 mols NaOH.
What you want to do is to back off very slightly with the NaOH (you might try something like 24.95 mL which I calculate to give 0.00019 M or a pH of 3.7. Inching closer, 24.99 mL would leave H^+ of 4E-5 for pH 4.4. The problem here is two-fold.
hope it helps
Hi, you've asked an incomplete question. However, I assumed you are referring to the article found on the Scientific American website.
Explanation:
<em>Remember,</em> according to that article we are told that scientists notice that these insects have a long nymphal (immature form before becoming adults) stage, one that can last up to 13 to 17 years on the ground before they leave the ground looking for mating partners.
Because it is only after mating occurs at this point that their eggs are laid, that is why scientists believe that cicadas only reproduce every 13 or 17 years.
Answer:
molarity= 0.238 mol L-
Explanation:
The idea here is that you need to use the fact that all the moles of sodium phosphate that you dissolve to make this solution will dissociate to produce sodium cations to calculate the concentration of the sodium cations.
Na 3 PO 4 (aq) → Na + (aq) + PO3−4 (aq)
Use the molar mass of sodium phosphate to calculate the number of moles of salt used to make this solution.
3.25g⋅1 mole N 3PO4 163.9g = 0.01983 moles Na3 PO 4
Now, notice that every
1 mole of sodium phosphate that you dissolve in water dissociates to produce
3bmoles of sodium cations in aqueous solution.
<span>283.89 g/mol is the molar mass of tetraphosphorus decoxide</span>