A. and D. would be the best pick for this sort of experiment, but maybe (unlikely) B. because you could see how they could react in certain situations, how they react to danger but I suggest A.
Hope this helps you ☁︎☀︎☁︎
Answer:
Faraday's constant will be smaller than it is supposed to be.
Explanation:
If the copper anode was not completely dry when its mass was measured, mass of the copper must be heavier than it should have been. Hence, the calculated Faraday’s constant would be smaller than it is supposed to be since when calculating Faraday’s Constant, the charge transferred is divided by the moles of electrons.
<h3><u>Answer;</u></h3>
It makes the reaction harder to start
<h3><u>Explanation</u>;</h3>
- <em><u>Activation energy is minimum amount of energy that is required for a reaction to start. Activation energy determines the rate of a chemical reaction such that the higher the activation energy, the lower the rate of chemical reaction and vice versa.</u></em>
- The source of activation energy needed to push chemical reactions forward is obtained from the surroundings. Catalyst speed up chemical reaction by lowering the activation energy. Therefore, catalysis is the increase in the rate of a chemical reaction by lowering its activation energy.
Answer:
then why'd you ask a question
Explanation:
An experiment that would show that intramolecular forces are stronger than intermolecular forces will be heating a block of ice in a sealed container then allowing it to change to steam.
Intramolecular forces are the forces of attraction that hold atoms together within a molecule. Intramolecular forces require a high amount of energy to splits atoms or molecules in a chemical bonding.
Intermolecular forces are weaker forces of attraction that occur between molecules. They require lesser energy to splits molecules compared to intramolecular forces.
An experiment that would show that intramolecular forces are stronger than intermolecular forces will be heating a block of ice in a sealed container then allowing it to change to steam.
In the process, the energy required to change the state from ice to steam water is more than intermolecular forces.
Thus, we can conclude that this experiment shows that the intramolecular forces are stronger than the intermolecular forces.
Learn more about Intramolecular forces here:
brainly.com/question/13588164