1 moles Carbon to grams = 12.0107 grams
2 moles Carbon to grams = 24.0214 grams
3 moles Carbon to grams = 36.0321 grams
4 moles Carbon to grams = 48.0428 grams
5 moles Carbon to grams = 60.0535 grams
6 moles Carbon to grams = 72.0642 grams
7 moles Carbon to grams = 84.0749 grams
8 moles Carbon to grams = 96.0856 grams
9 moles Carbon to grams = 108.0963 grams
10 moles Carbon to grams = 120.107 grams
Answer:
According to Le Chatelier's principle, increasing the reaction temperature of an exothermic reaction causes a shift to the left and decreasing the reaction temperature causes a shift to the right.
Explanation:
C6H12O6(s) + 6O2(g) ⇌6CO2(g) + 6H2O(g)
We are told that the forward reaction is exothermic, meaning heat is removed from the reacting substance to the surroundings.
According to Le Chatelier's principle,
1. for an exothermic reaction, on increasing the temperature, there is a shift in equilibrium to the left and formation of the product is favoured.
2. if the temperature of the system is decreased, the equilibrium shifts to right and the formation of the reactants is favoured.
3. if the reaction temperature is kept constant, the system is at equilibrium and there is no shift to the right nor to the left.
Answer:
1.
(NH4)2Cr2O7——>Cr2O7+N2+4H2O
2.
6CO2+6H2O——>C6H12O6+6O2
We need to first find the molarity of Ba(OH₂) solution.
A mass of 3.24 mg is dissolved in 1 L solution.
Ba(OH)₂ moles dissolved - 3.24 x 10⁻³ g/171.3 g/mol = 1.90 x 10⁻⁵ mol
dissociaton of Ba(OH)₂ is as follows;
Ba(OH)₂ --> Ba²⁺ + 2OH⁻
1 mol of Ba(OH)₂ dissociates to form 2OH⁻ ions.
Therefore [OH⁻] = (1.90 x 10⁻⁵)x2 = 3.8 x 10⁻⁵ M
pOH = -log[OH⁻]
pOH = -log (3.8 x 10⁻⁵)
pOH = 4.42
pH + pOH = 14
therefore pH = 14 - 4.42
pH = 9.58
Answer:
The final concentration is 0,151 M.
Explanation:
A dilution consists of the decrease of concentration of a substance in a solution (the higher the volume of the solvent, the lower the concentration).
We convert the unit of volume in L into ml: 3,25 x 1000= 3250 ml
We use the formula for dilutions:
C1 x V1 = C2 x V2
C2= (C1 xV1)/V2
C2= (32, 5 ml x 15, 1 M)/ 3250 ml
<em>C2=0,151 M</em>