Answer:
Here's what I get.
Explanation:
(b) Wavenumber and wavelength
The wavenumber is the distance over which a cycle repeats, that is, it is the number of waves in a unit distance.

Thus, if λ = 3 µm,

(a) Wavenumber and frequency
Since
λ = c/f and 1/λ = f/c
the relation between wavenumber and frequency is

Thus, if f = 90 THz

(c) Units
(i) Frequency
The units are s⁻¹ or Hz.
(ii) Wavelength
The SI base unit is metres, but infrared wavelengths are usually measured in micrometres (roughly 2.5 µm to 20 µm).
(iii) Wavenumber
The SI base unit is m⁻¹, but infrared wavenumbers are usually measured in cm⁻¹ (roughly 4000 cm⁻¹ to 500 cm⁻¹).
Answer:
A reversible reaction is one where <u><em>B) there is little change in the net free energy between substrate and product.</em></u>
Explanation:
A reversible reaction is one that reagents are transformed into products and at the same time products are transformed into reagents. That is to say that as the products appear in the reaction, they can react with each other by regenerating the reagents again. It is represented by a double arrow, indicating that the reaction can be carried out both in one direction and the other way around.
At the start of the reaction, there is a large amount of reagents. As time goes by, that amount decreases and speed too.
On the other hand, at the beginning of the reaction there are no products. As the reaction happens, the products are being formed and their speed will increase to match the speed of the reagents. When the rates of products and reagents are equal and constant, it is possible to say that the reaction is in chemical equilibrium. At this point, both reactions continue to happen, but the total concentrations of reagents and products no longer change.
The Gibbs free enthalpy or free energy of a system is a measure of the amount of usable energy (energy that a job can perform) in that system.
When a reaction system is in chemical equilibrium, it is in the lowest possible energy state (it has the lowest possible free energy). If a reaction is not in equilibrium, it will move spontaneously towards it because that allows it to reach a state of lower and more stable energy. Then when the reaction moves towards equilibrium, the free energy of the system decreases more and more.
Finally, <u><em>a reversible reaction is one where B) there is little change in the net free energy between substrate and product.</em></u>
Answer:

Explanation:
Hello,
In this case, since silver is initially hot as it cools down, the heat it loses is gained by the liquid, which can be thermodynamically represented by:

That in terms of the heat capacities, masses and temperature changes turns out:

Since no phase change is happening. Thus, solving for the heat capacity of the liquid we obtain:

Best regards.
During photosynthesis, plants produce glucose from simple inorganic molecules - carbon dioxide and water - using light.
I think the answer is d— sugar.
Answer:
The structure with the ring flipped is the most stable
Explanation:
We have the trans 1,2 - dimethylcyclohexane. With the wedge/dash structure we could not figure is this form is stable (If we do a comparison with the cis structure). But when we do a chair structure and ring flipped structure, this is easier to look.
The picture attached shows the structures, they are labeled as 1, 2 and 3, according to this problem.
In the chair structure, according to the picture below, you can see that both methyls are heading in the axial positions of the ring (One facing upward and the other downward). This is pretty stable, however, when the methyls are in those positions, the methyl position 1, can undergoes an 1,3 diaxial interactions with the hydrogens atoms (They are not drawn, but still are there), so this interaction makes this structure a little less stable that it can be.
On the other side, the ring flipped structure, we can see that both methyls are in the equatorials positions of the ring, and in these positions, it can avoid the 1,4 diaxial interactions with the hydrogens atoms, making this structure the most stable structure.
Hope this helps