The mass of ammonia required to produce 2.40 × 10⁵ kg of (NH₄)₂SO₄ is 6.18 * 10⁴ Kg of ammonia.
<h3>What mass in kilograms of ammonia are required to produce 2.40 × 10⁵ kg of (NH₄)₂SO₄?</h3>
The mass of ammonia required to produce 2.40 × 10⁵ kg of (NH₄)₂SO₄ is determined from the mole ratio of the reaction.
The mole ratio of the reaction is obtained from the balanced equation of the reaction given below:
- 2NH₃(g) + H₂SO₄(aq) → (NH₄)₂SO₄(aq)
Mole ratio of NH₃ and (NH₄)₂SO₄ is 2: 1
Mass of 2 moles of ammonia = 2 * 17 = 34 g
Mass of 1 mole of (NH₄)₂SO₄ = 132 g
Mass of ammonia required = 34/132 * 2.40 × 10⁵ kg
Mass of ammonia required = 6.18 * 10⁴ Kg of ammonia.
In conclusion, the mole ratio is used to determine the mass of ammonia required.
Learn more about mole ratio at: brainly.com/question/19099163
#SPJ1
2SO₂+O₂⇒2SO₃ ΔH=-197 kJ
<h3>Further explanation</h3>
Based on the principle of Hess's Law, the change in enthalpy of a reaction will be the same even though it is through several stages or ways
Reaction
2SO₂+O₂⇒2SO₃
Given :
1. S(s)+O₂(g)→SO₂(g) ΔH = -297 kJ
Reverse
SO₂(g) ⇒S(s)+O₂(g ΔH = +297 kJ
(sign change to +) x 2
2SO₂(g) ⇒2S(s)+2O₂(g ΔH = +594 kJ
2.2S(s)+3O2(g)→2SO3(g) ΔH=-791kJ
Add both reactions and remove/subtract the same compound for different sides
1. 2SO₂(g) ⇒2S(s)+2O₂(g) ΔH = +594 kJ
2.2S(s)+3O₂(g)→2SO₃(g) ΔH=-791kJ
--------------------------------------------------------+
2SO₂+O₂⇒2SO₃ ΔH=-197 kJ
<u>Answer:</u> The molarity of solution is 1.08 M
<u>Explanation:</u>
We are given:
(m/m) of phenol = 1.40 %
This means that 1.40 g of phenol is present in 100 g of solution.
To calculate volume of solution, we use the equation:

Density of solution = 0.9956 g/mL
Mass of solution = 100 g
Putting values in above equation, we get:

To calculate the molarity of solution, we use the equation:

We are given:
Mass of solute (phenol) = 1.40 g
Molar mass of phenol = 94.11 g/mol
Volume of solution = 100.442 mL
Putting values in above equation, we get:

Hence, the molarity of solution is 0.15 M
The empirical formula : MnO₂.
<h3>Further explanation</h3>
Given
632mg of manganese(Mn) = 0.632 g
368mg of oxygen(O) = 0.368 g
M Mn = 55
M O = 16
Required
The empirical formula
Solution
You didn't include the pictures, but the steps for finding the empirical formula are generally the same
- Find mol(mass : atomic mass)
Mn : 0.632 : 55 = 0.0115
O : 0.368 : 16 =0.023
- Divide by the smallest mol(Mn=0.0115)
Mn : O =

The empirical formula : MnO₂
Answer:
NaOH
Explanation:
Sodium hydroxide is a base because it dissociate into hydroxl ion when dissolved in water .