Answer:
Step-by-step explanation:
There are five lines of symmetry in a regular pentagon:
Each going from side midpoint to opposite vertex.
here is a drawing of all of them filled in:
(a) Yes all six trig functions exist for this point in quadrant III. The only time you'll run into problems is when either x = 0 or y = 0, due to division by zero errors. For instance, if x = 0, then tan(t) = sin(t)/cos(t) will have cos(t) = 0, as x = cos(t). you cannot have zero in the denominator. Since neither coordinate is zero, we don't have such problems.
---------------------------------------------------------------------------------------
(b) The following functions are positive in quadrant III:
tangent, cotangent
The following functions are negative in quadrant III
cosine, sine, secant, cosecant
A short explanation is that x = cos(t) and y = sin(t). The x and y coordinates are negative in quadrant III, so both sine and cosine are negative. Their reciprocal functions secant and cosecant are negative here as well. Combining sine and cosine to get tan = sin/cos, we see that the negatives cancel which is why tangent is positive here. Cotangent is also positive for similar reasons.
X^2 + 10X + 21
(X + 3)(X + 7)
Answer:
0.477 is the probability that the average score of the 36 golfers was between 70 and 71.
Step-by-step explanation:
We are given the following information in the question:
Mean, μ = 70
Standard Deviation, σ = 3
Sample size, n = 36
Let the average score of all pro golfers follow a normal distribution.
Formula:
P(score of the 36 golfers was between 70 and 71)



0.477 is the probability that the average score of the 36 golfers was between 70 and 71.
Answer:
4^15
Step-by-step explanation:
We multiply both exponents 3 and 5
So we get:
4^15
Hope this helps
Good Luck