Answer:
<em>☆</em><em><</em><em> </em><em><u>《</u></em><em><u>HOPE IT WILL HELP YOU</u></em><em>》</em><em>></em><em>☆</em>
Step-by-step explanation:
Y=1.5x+2
<h3>
<em><u>(</u></em><em><u>x</u></em><em><u>=</u></em><em><u>1</u></em><em><u>)</u></em></h3>
y=1.5 (1) +2
y=1.5+2
y=3.5
<h3>
<em><u>(</u></em><em><u>x</u></em><em><u>=</u></em><em><u>2</u></em><em><u>)</u></em></h3>
y=1.5(2)+2
y=3+2
y=5
<h3>
<em><u>(</u></em><em><u>x</u></em><em><u>=</u></em><em><u>3</u></em><em><u>)</u></em></h3>
y=1.5 (3)+2
y=4.5+2
y=6.5
<h3>(x=4)</h3>
y=1.5 (4)+2
y=6+2
y=8
<h3>
<em><u>(</u></em><em><u>x</u></em><em><u>=</u></em><em><u>5</u></em><em><u>)</u></em></h3>
y=1.5 (5)+2
y=7.5+2
y=9.5
<h2>
<em><u>please</u></em><em><u> </u></em><em><u>mark my ans as BRAIN</u></em><em><u> </u></em><em><u>LIST</u></em></h2>
<span>The answer should be 14t - 2m2 - 5/2 , if I am correct</span>
Answer:
answer is d
Step-by-step explanation:
Answer:
Please check the explanation and attached graph.
Step-by-step explanation:
Given the parent function
y = |x|
In order to translate the absolute function y = |x| vertically, we can use the function
g(x) = f(x) + h
when h > 0, the graph of g(x) translated h units up.
Given that the image function
y=|x|+4
It is clear that h = 4. Since 4 > 0, thus the graph y=|x|+4 translated '4' units up.
The graph of both parent and translated function is attache below.
In the graph,
The blue line represents the parent function y=|x|.
The red line represents the image function y=|x| + 4.
It is clear from the graph that the y=|x| + 4 translated '4' units up.
Please check the attached graph.
It is given in the question that
Ms. Velez will use both x gray bricks and y red bricks to build a wall around her garden. Gray bricks cost $0.45 each and red bricks cost $0.58 each. She can spend up to $200 on her project, and wants the number of red bricks to be less than half the number of gray bricks.
Maximum she can spend is $200. That is
![0.45x + 0.58y \leq 200 \\ y< \frac{1}{2} x](https://tex.z-dn.net/?f=0.45x%20%2B%200.58y%20%5Cleq%20200%0A%5C%5C%20%20y%3C%20%5Cfrac%7B1%7D%7B2%7D%20x)
And
![x\geq 0 , y \geq 0](https://tex.z-dn.net/?f=x%5Cgeq%200%20%2C%20y%20%5Cgeq%200)
And that's the required inequalities .