1) Atomic number of magnesium (Mg) is 12, it means that it has 12 protons and 12 electrons.
Electron configuration of magnesium atom: ₁₂Mg 1s² 2s² 2p⁶ 3s².
2) Atomic number of aluminium (Al) is 13, it means that it has 13 protons and 13 electrons., but if it lost one electron, it will have 12 electrons and 13 protons and become aluminium cation Al⁺.
Electron configuration of aluminium cation: ₁₃Al⁺ 1s² 2s² 2p⁶ 3s².
3) Atomic number of silicon (Si) is 14, it means that it has 14 protons and 14 electrons., but if it lost two electrons, it will have 12 electrons and 14 protons and become silicon cation Si²⁺.
Electron configuration of silicon cation: ₁₄Si²⁺ 1s² 2s² 2p⁶ 3s².
Answer:a law stating that the volume of an ideal gas at constant pressure is directly proportional to the absolute temperature
Explanation:
Explanation:
According to ideal gas equation, product of pressure and volume equals the product of number of moles, gas constant and temperature.
Mathematically, PV = nRT
where P = pressure, V = volume
n = no. of moles, R = gas constant = 0.0821 atm L/mol
T = temperature
Since, it is known that number of moles equal mass divided by molar mass.
Hence, number of moles of given sample of acetone are as follows.
No. of moles =
= 
=
mole
Therefore, putting the values in ideal gas equation as follows.
PV = nRT

= 0.359 atm
In 1 atm equal to 760 mm Hg. So, convert 0.359 atm into mm Hg as follows.
= 272.84 mm Hg
Hence, pressure of the ideal gas will be 100 mm Hg + 272.84 mm Hg = 372.84 mm Hg
Thus, we can conclude that the ideal gas pressure in the container if all of the liquid acetone evaporated is 372.84 mm Hg.