2. Example of electromagnetic energy is X-Rays.
Type of electromagnetic energy is radiation/ gamma rays.
3. Example of electromagnetic energy is Radio.
Type of electromagnetic energy is Electromagnetic spectrum
Explanation:
- Electromagnetic Energy Example Two
- Type of electromagnetic energy: Radiations / Gamma Rays
- Electromagnetic Energy Example Three
- Type of electromagnetic energy:
Electromagnetic spectrum
Answer:
1. Covalent Bond
2. Ionic Bond
Explanation:
Covalent bonds are defined as the bond in which sharing of electrons takes place between atoms. The sharing of electrons is in equal number so that it form a stable balance of attraction and repulsion between atoms. In the given example of CO2 (first image) oxygen is sharing equal number of electrons with carbon to form a stable bond called covalent bond.
Ionic bonds are formed when valence electrons are transferred to other atoms and form oppositely charged ions. In ionic bond formation, the atoms that gain electrons become negatively charged and the atoms that loses electrons become positively charged. In the given example of Ca Cl2, Ca is also giving its 2 valence electrons to each Cl and there is no stable balance of attraction and repulsion between atoms.
Hence, the correct answer is:
1. Covalent Bond
2. Ionic Bond
(For a bit of context I will use the reaction between HCl and Mg as an example)
The larger the surface area of the magnesium metal, the more particles are exposed to collide with the aqueous HCl particles to cause the reaction to occur. This increases the frequency per second of collisions, speeding up the rate of reaction.
The effect of a catalyst is to reduce the minimum collision energy which allows the reaction to happen. This does not increase the number of collisions per second, but increases the percentage of successful collisions, which consequently causes the rate of reaction to increase .
I have drawn diagrams showing the effect of surface area, but there isn't really a meaningful diagram that I know of to show the impact of a catalyst (at least not at GCSE level).
Answer:
d. Copper (II) sulfate
Explanation:
Given data:
Mass of Al = 1.25 g
Mass of CuSO₄ = 3.28 g
What is limiting reactant = ?
Solution:
Chemical equation:
2Al + 3CuSO₄ → Al₂ (SO₄)₃ + 3Cu
Number of moles of Al:
Number of moles = mass/molar mass
Number of moles = 1.25 g/ 27 g/mol
Number of moles = 0.05 mol
Number of moles of CuSO₄:
Number of moles = mass/molar mass
Number of moles = 3.28 g/ 159.6 g/mol
Number of moles = 0.02 mol
now we will compare the moles of reactant with product.
Al : Al₂ (SO₄)₃
2 : 1
0.05 : 1/2×0.05=0.025 mol
Al : Cu
2 : 3
0.05 : 3/2×0.05 = 0.075 mol
CuSO₄ : Al₂ (SO₄)₃
3 : 1
0.02 : 1/3×0.02=0.007 mol
CuSO₄ : Cu
3 : 3
0.02 : 0.02
Less number of moles of reactants are produced by CuSO₄ thus it will act as limiting reactant.