The equation of the parabola in the vertex form is y = (x - 3
- 5 with ( 3, -5) is the vertex of the parabola and 1 is the multiplier
In the above question, A parabolic equation is given as follows:
Y = x^2 - 6x + 4
The equation of the parabola in the vertex form is :
y = a (x - h
+ k
Where a is a multiplier in the equation and (h,k) are the coordinates of the vertex
So, in order to obtain this form, we will use the method of completing square :
Y = x^2 - 6x + 4
y =
- 6x + (9 -9) + 4
y = (x - 3
+ ( -9 + 4)
y = (x - 3
- 5
where, ( 3, -5) is the vertex of the parabola and 1 is the multiplier
Hence, The equation of the parabola in the vertex form is y = (x - 3
- 5 with ( 3, -5) is the vertex of the parabola and 1 is the multiplier
To learn more about, parabola, here
brainly.com/question/21685473
#SPJ1
The substitution property of equality, one of the eight properties of equality, states that if x = y, then x can be substituted in for y in any equation, and y can be substituted for x in any equation.
Hey there! :)
The total measure for triangles is 180°
You already know 2 angles. Add both angles and subtract from 180 to find x
37 + 82 = 119
180 - 119 = 61
m∠x = 61°
Hope this helps :)
Answer:
The measure of segment AC is 36 units
Step-by-step explanation:
- The mid-point divides the segment into two equal parts in length
- B is the mid point of segment AC
- That means B divides segment AC into two equal parts in length
∴ AB = BC
∵ AC = 5x - 9
∵ AB = 2x
- The two parts AB and BC are equal in length
∴ BC = 2x
∵ AC = AB + BC
- Substitute the values of AB and BC in the expression of AC
∴ AC = 2x + 2x
∴ AC = 4x
∵ AC = 5x - 9
- Equate the two values of AC
∴ 5x - 9 = 4x
- Add 9 to both sides
∴ 5x = 4x + 9
- Subtract 4x from both sides
∴ x = 9
- Substitute the value of x in any expression of AC
∵ AC = 4x
∵ x = 9
∴ AC = 4(9) = 36
* The measure of segment AC is 36 units
Base = 5
height = 12
Area = (5*12)/2 = 30 m²