9514 1404 393
Answer:
(3, 1)
Step-by-step explanation:
We assume you want the solution to the system ...
The second equation gives a nice expression for x, so we can use that in the first equation.
2(y+2) -3y = 3 . . . . substitute for x in the first equation
2y +4 -3y = 3 . . . . . eliminate parentheses
-y = -1 . . . . . . . . . . . collect terms, subtract 4
y = 1 . . . . . . . . . . . . multiply by -1
x = 1 +2 = 3 . . . . . . substitute for y in the second equation
The solution is (x, y) = (3, 1).
Answer:
Lo siento. :(
Step-by-step explanation:
Me preguntaba lo mismo. Desearía poder ayudar, pero también necesito ayuda.
Answer:
translate to English please
Step-by-step explanation:
so confused
Answer:
ummmmmmmm
Step-by-step explanation:
Answer with explanation:
→→→Function 1
f(x)= - x²+ 8 x -15
Differentiating once , to obtain Maximum or minimum of the function
f'(x)= - 2 x + 8
Put,f'(x)=0
-2 x+ 8=0
2 x=8
Dividing both sides by , 2, we get
x=4
Double differentiating the function
f"(x)= -2, which is negative.
Showing that function attains maximum at ,x=4.
Now,f(4)=-4²+ 8× 4-15
= -16 +32 -15
= -31 +32
=1
→→→Function 2:
f(x) = −x² + 2 x − 3
Differentiating once , to obtain Maximum or minimum of the function
f'(x)= -2 x +2
Put,f'(x)=0
-2 x +2=0
2 x=2
Dividing both sides by , 2, we get
x=1
Double differentiating the function,gives
f"(x)= -2 ,which is negative.
Showing that function attains maximum at ,x=1.
f(1)= -1²+2 ×1 -3
= -1 +2 -3
= -4 +2
= -2
⇒⇒⇒Function 1 has the larger maximum.