The second choice is not a relation.
The first and third choices have multiple (input, output) pairs that have the same input. Such a relation is not a function. Any time you see this, you know the relation is NOT a function.
The best answer is the 4th choice ...
... {(0, -9), (-9, 0), (-3, -3)}
Answer:
The mistake stems from the assumption that angle dab and abc are both 90 and ad = bc and that the perpendicular bisector of dc is different from the perpendicular bisector to ab because they are the same and abcd is a rectangle.
Step-by-step explanation:
If ∡dab = ∡abc and side ab is equal to side bc which are opposite sides, ten then ab is parallel to bc which means the quadrilateral is parallelogram. Also since two angles of the four angles of the parallelogram are 90 degrees then the parallelogram is a rectangle.
The bisector of one side of a rectangle will also bisect the opposite side of the rectangle. Therefore the bisector of dc is the same as the bisector of ab and it meets ab at the midpoint of ab. Therefore p is now at the midpoint of ab and there are no triangles pad and pbc.
Answer:
-2/10
Step-by-step explanation:
First step
2 ( 3) 6
_ x -(_) = - __
6 ( 5) 30
Simplified
6 1
-__ = - _
30 5
Answer:
Option 4 is correct. The length of PR is 6.4 units.
Step-by-step explanation:
From the given figure it is noticed that the triangle PQR and triangle MQR.
Let the length of PR be x.
Pythagoras formula

Use pythagoras formula for triangle PQM.





The value of PM is 10. The length of PR is x, so the length of MR is (10-x).
Use pythagoras formula for triangle PQR.


.....(1)
Use pythagoras formula for triangle MQR.



.... (2)
From equation (1) and (2) we get




Therefore length of PR is 6.4 units and option 4 is correct.