Answer: (0.5496, 0.5754)
Step-by-step explanation:
The confidence interval for population proportion (p) is given by :-
, where
= Sample proportion , n= sample size , z*= Critical z-value.
Let p be the proportion of all college students who are in favor of banning Hawaiian shirt.
Given, A random sample of 4000 college students yielded 2250 who are in favor of banning Hawaiian shirts.
i.e. n=4000

z-value for 90% confidence level is 1.645
Now , 90% confidence interval for p would be :


Hence, the required 90% interval = (0.5496, 0.5754)
Answer:
The answer is D.
Step-by-step explanation:
Sci-Fi + Comedy = 60.
Other + Action = 59.
So, that makes it D.
Hope this helps. :)
14. 1.5, 10 <- Answer
15. 5,1 <- Answer
Proof 14
Solve the following system:
{2 x - y = -7 | (equation 1)
4 x - y = -4 | (equation 2)
Swap equation 1 with equation 2:
{4 x - y = -4 | (equation 1)
2 x - y = -7 | (equation 2)
Subtract 1/2 × (equation 1) from equation 2:
{4 x - y = -4 | (equation 1)
0 x - y/2 = -5 | (equation 2)
Multiply equation 2 by -2:
{4 x - y = -4 | (equation 1)
0 x+y = 10 | (equation 2)
Add equation 2 to equation 1:
{4 x+0 y = 6 | (equation 1)
0 x+y = 10 | (equation 2)
Divide equation 1 by 4:
{x+0 y = 3/2 | (equation 1)
0 x+y = 10 | (equation 2)
Collect results:
Answer: {x = 1.5
y = 10
Proof 15.
Solve the following system:
{5 x + 7 y = 32 | (equation 1)
8 x + 6 y = 46 | (equation 2)
Swap equation 1 with equation 2:
{8 x + 6 y = 46 | (equation 1)
5 x + 7 y = 32 | (equation 2)
Subtract 5/8 × (equation 1) from equation 2:{8 x + 6 y = 46 | (equation 1)
0 x+(13 y)/4 = 13/4 | (equation 2)
Divide equation 1 by 2:
{4 x + 3 y = 23 | (equation 1)
0 x+(13 y)/4 = 13/4 | (equation 2)
Multiply equation 2 by 4/13:
{4 x + 3 y = 23 | (equation 1)
0 x+y = 1 | (equation 2)
Subtract 3 × (equation 2) from equation 1:
{4 x+0 y = 20 | (equation 1)
0 x+y = 1 | (equation 2)
Divide equation 1 by 4:
{x+0 y = 5 | (equation 1)
0 x+y = 1 | (equation 2)
Collect results:
Answer: {x = 5 y = 1
Answer:
Step-by-step explanation:
It's 2.3 as the centre of a circle is twice the circumference learn the circle theorem