Answer:
![P_2 = \$6,000\\P_1 = \$14,000](https://tex.z-dn.net/?f=P_2%20%3D%20%5C%246%2C000%5C%5CP_1%20%3D%20%5C%2414%2C000)
Step-by-step explanation:
The formula of simple interest is:
![I = P_0rt](https://tex.z-dn.net/?f=I%20%3D%20P_0rt)
Where I is the interest earned after t years
r is the interest rate
is the initial amount
We know that the investment was $20,000 in two accounts
_______________________________________________
<u><em>For the first account</em></u> r = 0.07 per year.
Then the formula is:
![I_1 = P_1r_1t](https://tex.z-dn.net/?f=I_1%20%3D%20P_1r_1t)
Where
is the initial amount in account 1 at a rate
during t = 1 year
![I_1 = P_1(0.07)(1)\\\\I_1 = 0.07P_1](https://tex.z-dn.net/?f=I_1%20%3D%20P_1%280.07%29%281%29%5C%5C%5C%5CI_1%20%3D%200.07P_1)
<u><em>For the second account </em></u>r = 0.05 per year.
Then the formula is:
![I_2 = P_2r_2t](https://tex.z-dn.net/?f=I_2%20%3D%20P_2r_2t)
Where
is the initial amount in account 2 at a rate
during t = 1 year
Then
![I_2 = P_2(0.05)(1)\\\\I_2 = 0.05P_2](https://tex.z-dn.net/?f=I_2%20%3D%20P_2%280.05%29%281%29%5C%5C%5C%5CI_2%20%3D%200.05P_2)
We know that the final profit was I $1,280.
So
![I = I_1 + I_2=1,280](https://tex.z-dn.net/?f=I%20%3D%20I_1%20%2B%20I_2%3D1%2C280)
Substituting the values
,
and I we have:
![1,280 = 0.07P_1 + 0.05P_2](https://tex.z-dn.net/?f=1%2C280%20%3D%200.07P_1%20%2B%200.05P_2)
As the total amount that was invested was $20,000 then
![P_0 = P_1 + P_2 = 20,000](https://tex.z-dn.net/?f=P_0%20%3D%20P_1%20%2B%20P_2%20%3D%2020%2C000)
Then we multiply the second equation by -0.07 and add it to the first equation:
![0.07P_1 + 0.05P_2 = 1.280\\.\ \ \ \ \ \ \ \ +\\-0.07P_1 -0.07P_2 = -1400\\-------------](https://tex.z-dn.net/?f=0.07P_1%20%2B%200.05P_2%20%3D%201.280%5C%5C.%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%2B%5C%5C-0.07P_1%20-0.07P_2%20%3D%20-1400%5C%5C-------------)
![-0.02P_2 = -120\\\\P_2 = 6,000](https://tex.z-dn.net/?f=-0.02P_2%20%3D%20-120%5C%5C%5C%5CP_2%20%3D%206%2C000)
Then ![P_1 = 14,000](https://tex.z-dn.net/?f=P_1%20%3D%2014%2C000)