Answer:
Step-by-step explanation:
We'll take this step by step. The equation is
![8-3\sqrt[5]{x^3}=-7](https://tex.z-dn.net/?f=8-3%5Csqrt%5B5%5D%7Bx%5E3%7D%3D-7)
Looks like a hard mess to solve but it's actually quite simple, just do one thing at a time. First thing is to subtract 8 from both sides:
![-3\sqrt[5]{x^3}=-15](https://tex.z-dn.net/?f=-3%5Csqrt%5B5%5D%7Bx%5E3%7D%3D-15)
The goal is to isolate the term with the x in it, so that means that the -3 has to go. Divide it away on both sides:
![\sqrt[5]{x^3}=5](https://tex.z-dn.net/?f=%5Csqrt%5B5%5D%7Bx%5E3%7D%3D5)
Let's rewrite that radical into exponential form:

If we are going to solve for x, we need to multiply both sides by the reciprocal of the power:

On the left, multiplying the rational exponent by its reciprocal gets rid of the power completely. On the right, let's rewrite that back in radical form to solve it easier:
![x=\sqrt[3]{5^5}](https://tex.z-dn.net/?f=x%3D%5Csqrt%5B3%5D%7B5%5E5%7D)
Let's group that radicad into groups of 3's now to make the simplifying easier:
because the cubed root of 5 cubed is just 5, so we can pull it out, leaving us with:
which is the same as:
![x=5\sqrt[3]{25}](https://tex.z-dn.net/?f=x%3D5%5Csqrt%5B3%5D%7B25%7D)
Answer:
B.
Step-by-step explanation:
Missing xx:1 Missing y:5
11/3 would be closlely to 3.5 because it is 3.66667
The normal vector to the plane <em>x</em> + 3<em>y</em> + <em>z</em> = 5 is <em>n</em> = (1, 3, 1). The line we want is parallel to this normal vector.
Scale this normal vector by any real number <em>t</em> to get the equation of the line through the point (1, 3, 1) and the origin, then translate it by the vector (1, 0, 6) to get the equation of the line we want:
(1, 0, 6) + (1, 3, 1)<em>t</em> = (1 + <em>t</em>, 3<em>t</em>, 6 + <em>t</em>)
This is the vector equation; getting the parametric form is just a matter of delineating
<em>x</em>(<em>t</em>) = 1 + <em>t</em>
<em>y</em>(<em>t</em>) = 3<em>t</em>
<em>z</em>(<em>t</em>) = 6 + <em>t</em>
f(x) = y.
f(-6) means what is y when x is equal to -6.
Answer: y = f(-6) = 6.
Answer: C