Answer: 3x + 4c + 11
Step-by-step explanation: Combine like terms.
Answer:
$1,956.80
Step-by-step explanation:
For amounts over $6000, the commission can be computed as ...
0.14s -300 . . . . . . for sales (s) ≥ 6000
So, for $16,120 in sales, the commission is ...
0.14×$16,120 -300 = $2,256.80 -300 = $1,956.80
__
The commission schedule suggests that for larger amounts, you divide the problem into two parts: calculate the commission on $6000, and separately calculate the commission on the amount over $6000.
0.14(s -6000) + 0.09(6000)
= 0.14s - 0.14·6000 +0.09·6000
= 0.14s -300 . . . . the formula used above for s ≥ 6000
Answer:
see below
Step-by-step explanation:
2x+8y=12 3x-8y=11
If we have to solve by substitution, Take the first equation and divide by 2
2x/2 + 8y/2 =12/2
x+4y = 6
Then subtract 4y from each side
x = 6 -4y
Then substitute this into the second equation
This is best solved by elimination
2x+8y=12
3x-8y=11
----------------
5x = 36
x = 36/5
see the attached figure with the letters
1) find m(x) in the interval A,BA (0,100) B(50,40) -------------- > p=(y2-y1(/(x2-x1)=(40-100)/(50-0)=-6/5
m=px+b---------- > 100=(-6/5)*0 +b------------- > b=100
mAB=(-6/5)x+100
2) find m(x) in the interval B,CB(50,40) C(100,100) -------------- > p=(y2-y1(/(x2-x1)=(100-40)/(100-50)=6/5
m=px+b---------- > 40=(6/5)*50 +b------------- > b=-20
mBC=(6/5)x-20
3)
find n(x) in the interval A,BA (0,0) B(50,60) -------------- > p=(y2-y1(/(x2-x1)=(60)/(50)=6/5
n=px+b---------- > 0=(6/5)*0 +b------------- > b=0
nAB=(6/5)x
4) find n(x) in the interval B,CB(50,60) C(100,90) -------------- > p=(y2-y1(/(x2-x1)=(90-60)/(100-50)=3/5
n=px+b---------- > 60=(3/5)*50 +b------------- > b=30
nBC=(3/5)x+30
5) find h(x) = n(m(x)) in the interval A,B
mAB=(-6/5)x+100
nAB=(6/5)x
then
n(m(x))=(6/5)*[(-6/5)x+100]=(-36/25)x+120
h(x)=(-36/25)x+120
find <span>h'(x)
</span>h'(x)=-36/25=-1.44
6) find h(x) = n(m(x)) in the interval B,C
mBC=(6/5)x-20
nBC=(3/5)x+30
then
n(m(x))=(3/5)*[(6/5)x-20]+30 =(18/25)x-12+30=(18/25)x+18
h(x)=(18/25)x+18
find h'(x)
h'(x)=18/25=0.72
for the interval (A,B) h'(x)=-1.44
for the interval (B,C) h'(x)= 0.72
<span> h'(x) = 1.44 ------------ > not exist</span>