Physical change there is no energy lost or gain. Basically the physical change is the change of state like melting
Answer:
A and C are true , B and D are false
Explanation:
For A)
from the first law of thermodynamics (in differential form)
dU= δQ - δW = δQ - PdV
from the second law
dS ≥ δQ/T
then
dU ≤ T*dS - p*dV
dU - T*dS + p*dV ≤ 0
from the definition of Gibbs free energy
G=H - TS = U+ PV - TS → dG= dU + p*dV + V*dp - T*dS - S*dT
dG - V*dp + S*dT = dU - T*dS + p*dV ≤ 0
dG ≤ V*dp - S*dT
in equilibrium, pressure and temperature remains constant ( dp=0 and dT=0). Thus
dG ≤ 0
ΔG ≤ 0
therefore the gibbs free energy should decrease in an spontaneous process → A reaction with a negative Gibbs standard free energy is thermodynamically spontaneous under standard conditions
For B) Since the standard reduction potential is related with the Gibbs standard free energy through:
ΔG⁰=-n*F*E⁰
then, when ΔG⁰ is negative , E⁰ is positive and therefore a coupled redox reaction with a positive standard reduction potential is thermodynamically spontaneous.
Put simply, a covalent bond is a chemical bond between two atoms where electron pairs are shared.
Answer:
<h2>The advantage is that, you can add additional power devices usually using batteries.</h2>
<h2>The disadvantage is ... if one component in a series circuit fails, then all the components in the circuit fail because the circuit has been broken. </h2>
Like mitosis, meiosis is a form of eukaryotic cell division. However, these two processes distribute genetic material among the resulting daughter cells in very different ways. meiosis gives rise to four unique daughter cells, each of which has half the number of chromosomes as the parent cell. Because meiosis creates cells that are destined to become gametes (or reproductive cells), this reduction in chromosome number is critical — without it, the union of two gametes during fertilization would result in offspring with twice the normal number of chromosomes!