Answer: There are
formula units
Explanation:
According to avogadro's law, 1 mole of every substance occupies 22.4 L at STP and contains avogadro's number
of particles.
To calculate the moles, we use the equation:

1 mole of
contains =
formula units
Thus 0.38 moles of
contains =
formula units
Thus there are
formula units
Answer:
5
Explanation:
Balance the equation in order of C,H,O and then you should be able to find the coefficient
Answer:
my best guess is b
Explanation:
typically the lower the pitch the longer the wave line inbetween the inclines are
The four quantum numbers are:
principle quantum number: this number describes the energy of orbitals. It describes the most probable distance between the electron and the nucleus.
angular quantum number: this number describes the shape of orbitals, and thus, describes the angular distribution.
magnetic quantum number: this number describes the number of orbitals and how they are oriented within the subshell
spin quantum number: this number determines the direction of the spin of the electron.
Based on the above, the quantum number that distinguishes the different shapes of the orbitals is the angular quantum number
Complete question is;
When a diprotic acid is titrated with a strong base, and the Ka1 and Ka2 are significantly different, then the pH vs. volume plot of the titration will have
a. a pH of 7 at the equivalence point.
b. two equivalence points below 7.
c. no equivalence point.
d. one equivalence point.
e. two distinct equivalence points
Answer:
Option E - Two Distinct Equivalence points
Explanation:
I've attached a sample diprotic acid titration curve.
In diprotic acids, the titration curves assists us to calculate the Ka1 and Ka2 of the acid. Thus, the pH at the half - first equivalence point in the titration will be equal to the pKa1 of the acid while the pH at the half - second equivalence point in a titration is equal to the pKa2 of the acid.
Thus, it is clear that there are two distinct equivalence points.