Answer:
e. 0.977
Step-by-step explanation:
Problems of normally distributed samples are solved using the z-score formula.
In a set with mean
and standard deviation
, the zscore of a measure X is given by:

The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the pvalue, we get the probability that the value of the measure is greater than X.
In this problem, we have that:

Which of the following is closest to the proportion of daily transactions greater than 350?
This is 1 subtracted by the pvalue of Z when X = 350. So



has a pvalue of 0.023
1 - 0.023 = 0.977
So the correct answer is:
e. 0.977
Answer: 96°
Step-by-step explanation:
Sum of angles of a triangle = 180°
3 + 8 + 4 = 15
The biggest angle is 8/15 * 180 = 96°
Answer:
the solution is (-1, 2)
Step-by-step explanation:
Let's solve the system
(3x + 4y = 5)
(2x - 3y = -8)
using the method of elimination by addition and subtraction. Notice that if we multiply all terms of the first equation by 3 and all terms of the second by 4, y as a variable will temporarily disappear:
9x + 12y = 15
8x - 12y = -32
-----------------------
17x = - 17, so x = -1.
Replacing x in the second equation by -1, we get:
2(-1) - 3y = -8, or
2 + 3y = 8,
or 3y = 6. Thus, y = 2, and the solution is (-1, 2).
We have the following three conclusions about the <em>piecewise</em> function evaluated at x = 14.75:
.
.
does not exist as
.
<h3>How to determinate the limit in a piecewise function</h3>
In a <em>piecewise</em> function, the limit for a given value exists when the two <em>lateral</em> limits are the same and, thus, continuity is guaranteed. Otherwise, the limit does not exist.
According to the definition of <em>lateral</em> limit and by observing carefully the figure, we have the following conclusions:
.
.
does not exist as
.
To learn more on piecewise function: brainly.com/question/12561612
#SPJ1