<span>The flywheel is solid cylindrical disc. Moment of inertial = ½ * mass * radius^2
Mass = 40.0 kg
Radius = ½ * 76.0 cm = 38 cm = 0.38 meter
Moment of inertial = ½ * 41 * 0.36^2
Convert rpm to radians/second
The distance of 1 revolution = 1 circumference = 2 * π * r
The number of radians/s in 1 revolution = 2 * π
1 minute = 60 seconds
1 revolution per minute = 2 * π radians / 60 seconds = π/30 rad/s
Initial angular velocity = 500 * π/30 = 16.667 * π rad/s
170 revolutions = 170 * 2 * π = 340 * π radians
The flywheel’s initial angular velocity = 16.667 * π rad/s. It decelerated at the rate of 1.071 rad/s^2 for 48.89 seconds.
θ = ωi * t + ½ * α * t^2
θ = 16.667 * π * 48.89 + ½ * -1.071 * 48.89^2
2559.9 - 1280
θ = 1280 radians</span>
Answer:
by obtaining the total mass of the dimes present:
d = 27.22 g / dozen the density of dimes
M = n * d = 5 dozen * 27.22 g / dozen = 126.1 g
I think it would be eager
In genetic traits, p and q represent the relative probabilities of the two alleles manifesting. If these two are the only options (ex. a dominant one and a recessive one), then the probabilities of both must sum up to 1. In this case, since we are given that q = 0.4, then p + q = 1, p + 0.4 = 1, and p = 0.6.
Answer:
F1 = k Q1 * Q2 / R^2
If Q1 is doubled then F2 = 2 F1 = 72 units