Answer:
d=9.462×10^15 meters
Explanation:
<u>Relation between distance, temps and velocity:</u>
d=v*t
t=1year*(365days/1year)*/(24hours/1day)*(3600s/1h)=31536000s
So:
1 light year=d=3*10^8m/s*3.154*10^7s=9.462×10^15 meters
The cart's acceleration to the right after the mass is released is determined as 7.54 m/s².
<h3>
Acceleration of the cart</h3>
The acceleration of the cart is determined from the net force acting on the mass-cart system.
Upward force = Downward force
ma = mg
13a = 10(9.8)
13a = 98
a = 98/13
a = 7.54 m/s²
Thus, the cart's acceleration to the right after the mass is released is determined as 7.54 m/s².
Learn more about acceleration here: brainly.com/question/14344386
#SPJ1
Answer:
a.) 1567.2 m/s
b.) 149.4 m/s
Explanation:
Given that a 26 kg body is moving through space in the positive direction of an x axis with a speed of 350 m/s when, due to an internal explosion, it breaks into three parts. One part, with a mass of 7.8 kg, moves away from the point of explosion with a speed of 180 m/s in the positive y direction. A second part, with a mass of 8.8 kg, moves in the negative x direction with a speed of 640 m/s.
The x-component of the third part can be calculated by assuming that it moves in a positive x axis.
The third mass = 26 - ( 7.8 + 8.8)
The third mass = 26 - 16.6
The third mass = 9.4kg
since momentum is conserved, the momentum before explosion will be equal to sum of the momentum after explosion
26 x 350 = -8.8 x 640 + 9.4V
9100 = -5632 + 9.4V
9.4V = 9100 + 5632
9.4V = 14732
V = 14732/9.4
V = 1567.2 m/s
(b) y-component of the velocity of the third part will be
7.8 x 180 = 9.4 V
1404 = 9.4V
V = 1404/9.4
V = 149.4 m/s