
- c. The weight of an object on the moon will be the same as its weight on Earth. It is false because the weight of an on the moon will be 1/6 th times its weight on Earth.
- d. The weight of an object is its mass multiplied by the force of gravity. The statement is false because the formula of weight is mass × acceleration due to gravity, not force of gravity.
- e. The mass and weight of an object are the same thing. The statement is false because mass means a body of matter. While weight of an object is its mass multiplied by the force of gravity.
- f. The mass of an object is the force of gravity acting upon an object. It is false because it will be the weight of the object not mass.
- So, the answers are c, d, e and f.
Hope you could understand.
If you have any query, feel free to ask.
Answer:
The velocity is 
Henrietta is at distance
from the under the window
Explanation:
From the question we are told that
The speed of Henrietta is 
The height of the window from the ground is 
Generally the time taken for the lunch to reach the ground assuming it fell directly under the window is

=>
=>
Generally the time taken for the lunch to reach Henrietta is mathematically represented as

Here
is the time duration that elapsed after Henrietta has passed below the window the value is given as 4 s
Now
=>
Generally the distance covered by Henrietta before catching her lunch is

=> 
=> 
Generally the speed with which Bruce threw her lunch is mathematically represented as


I don't know if you need to complete this question or do it otherwise, however, I managed to find on the Internet on several places this completion of your sentence:
<span>Electric current flows through a long rod generating thermal energy at a uniform volumetric rate of q = 2 x 10</span>⁶ W/m³.
I'm not sure whether that is the answer you were looking for, but that's what I found.
Answer:
Static electricity : is a familiar electric phenomenon in which charged particles are transferred from one body to another
Ohm's law : states that the voltage or potential difference between two points is directly proportional to the current or electricity passing through the resistance