Answer:
I think the answer is 0.2 m/s2
Explanation:
Hubble noticed that the galaxies were moving away from us, which meant the universe was expanding.
This is why constellations change over time. In some years, the Big Dipper won't actually look like a dipper anymore.
Answer:
15 m/s or 1500 cm/s
Explanation:
Given that
Speed of the shoulder, v(h) = 75 cm/s = 0.75 m/s
Distance moved during the hook, d(h) = 5 cm = 0.05 m
Distance moved by the fist, d(f) = 100 cm = 1 m
Average speed of the fist during the hook, v(f) = ? cm/s = m/s
This can be solved by a very simple relation.
d(f) / d(h) = v(f) / v(h)
v(f) = [d(f) * v(h)] / d(h)
v(f) = (1 * 0.75) / 0.05
v(f) = 0.75 / 0.05
v(f) = 15 m/s
Therefore, the average speed of the fist during the hook is 15 m/s or 1500 cm/s
Answer:
Explanation:
This is case of interference in thin films
for constructive interference in thin film the condition is
2μ t = (2n+1)λ/2 ; μ is refractive index of oil , t is thickness of oil , λ is wave length of light .
2 x 1.28 x t = λ/2 , if n = 0
2 x 1.28 x t = 605 /2
t = 118.16 nm .
the minimum non-zero thickness of the oil film required = 118.16 nm.