Answer:
130.165636364°C
Explanation:
P = Pressure
V = Volume
n = Number of moles
R = Gas constant = 0.082 L atm/mol K
From ideal gas law we have


The initial temperature is 
A. Larger. It is larger Bc they r all larger than the other
Answer:
Light's angle of refraction = 37.1° (Approx.)
Explanation:
Given:
Index of refraction = 1.02
Base of refraction = 1
Angle of incidence = 38°
Find:
Light's angle of refraction
Computation:
Using Snell's law;
Sin[Angle of incidence] / Sin[Light's angle of refraction] = Index of refraction / Base of refraction
Sin38 / Light's angle of refraction = 1.02 / 1
Sin[Light's angle of refraction] = Sin 38 / 1.02
Sin[Light's angle of refraction] = [0.6156] / 1.02
Sin[Light's angle of refraction] = 0.6035
Light's angle of refraction = 37.1° (Approx.)
Answer:
Pitcher is accelerating the ball at 30 times of acceleration due to gravity = 294 m/s²
Explanation:
Force applied on baseball = 30 times weight of the ball.
Weight of ball = mg, where m is the mass of ball and g is acceleration due to gravity value.
We have force applied is also equal to product of mass and acceleration.
F = ma = 30 x mg
a = 30g
So, pitcher is accelerating the ball at 30 times of acceleration due to gravity = 294 m/s²