<span>(1,625) No
(0,-25) No
(-1,-1) No
Think about what an integer exponent means for an negative base and you'll understand this problem. For instance the powers of -25 would be
-25^1 = -25
-25^2 = (-25) * (-25) = 625
-25^3 = (-25)*(-25)*(-25) = -15625
and so on, giving 390625, -9765625, 244140625, etc.
But that's a different subject. For the ordered pairs given, let's check them out.
(1,625)
-25^1 + 1 = -25 + 1 = -24. And -24 is not equal to 625, so "No".
(0,-25)
-25^0 + 1 = 1 +1 = 2.
Note: Any real number other than 0 raised to the 0th power is 1. And 2 is not equal to -25, so "No".
(-1,-1)
-25^(-1) + 1 = 1/(-25^1) + 1 = 1/-25 + 1 = 24/25.
And 24/25 is not equal to -1, so also "No".</span>
Step-by-step explanation:
my answer is in the image above
Answer:6018
Step-by-step explanation:
Given Sequence

It represent an A.P. with
first term 
common difference 
So sum of 51 term
![S_n=\frac{n}{2}[2a+(n-1)d]](https://tex.z-dn.net/?f=S_n%3D%5Cfrac%7Bn%7D%7B2%7D%5B2a%2B%28n-1%29d%5D)
![S_{51}=\frac{51}{2}\times [2\times (-282)+(51-1)16]](https://tex.z-dn.net/?f=S_%7B51%7D%3D%5Cfrac%7B51%7D%7B2%7D%5Ctimes%20%5B2%5Ctimes%20%28-282%29%2B%2851-1%2916%5D)
![S_{51}=\frac{51}{2}\times [-564+800]](https://tex.z-dn.net/?f=S_%7B51%7D%3D%5Cfrac%7B51%7D%7B2%7D%5Ctimes%20%5B-564%2B800%5D)
![S_{51}=\frac{51}{2}\times [236]](https://tex.z-dn.net/?f=S_%7B51%7D%3D%5Cfrac%7B51%7D%7B2%7D%5Ctimes%20%5B236%5D)


Answer:
i'm 100% sure its A
Step-by-step explanation:
4/9 x 21/6 is this what you’re asking?
If so the answer is 1 5/9