Answer:
Airplane speed relative to the ground is 260 km/h and θ = 22.6º direction from north to east
Explanation:
This is a problem of vector composition, a very practical method is to decompose the vectors with respect to an xy reference system, perform the sum of each component and then with the Pythagorean theorem and trigonometry find the result.
Let's take the north direction with the Y axis and the east direction as the X axis
Vy = 240 km / h airplane
Vx = 100 Km / h wind
a) See the annex
Analytical calculation of the magnitude of the speed and direction of the aircraft
V² = Vx² + Vy²
V = √ (240² + 100²)
V = 260 km/h
Airplane speed relative to the ground is 260 km/h
Tan θ = Vy / Vx
tan θ = 100/240
θ = 22.6º
Direction from north to eastb
b) What direction should the pilot have so that the resulting northbound
Vo = 240 km/h airplane
Vox = Vo cos θ
Voy = Vo sin θ
Vx = 100 km / h wind
To travel north the speeds the x axis (East) must add zero
Vx -Vox = 0
Vx = Vox = Vo cos θ
100 = 240 cos θ
θ = cos⁻¹ (100/240)
θ = 65.7º
North to West Direction
The speed in that case would be
V² = Vx² + Vy²
To go north we must find Vy
Vy² = V² - Vx²
Vy = √( 240² - 100²)
Vy = 218.2 km / h
Use the displacement law, peak wavelength = 0.0029/T =0.0029/30000 = 97nm
Answer:
C) Both technicians A and B
Explanation:
Fuel pressure regulators are a vacuum operated spring-loaded diaphragm that enables a vehicle's fuel delivery system to maintain a constant pressure. When the vehicle is at idle the regulator is open allowing fuel to bypass the delivery system and go back into the tank.
In pounds per square inch, the atmosphere exerts 14.7 PSI at sea level on average. The vacuum inside an engine's intake manifold, by comparison, can range from zero up to 22 inches Hg or more depending on operating conditions. Vacuum at idle is always high and typically ranges from 16 to 20 inches Hg in most vehicles.
Wavelength = (speed)/(frequency) = 300,000,000/120,000,000 = 2.5 meters