Answer:
Cardiac Arrest, burns, and nerve damage.
Explanation:
Basically, the main risk is cardiac arrest, caused by the electric current interfering with the normal operation of the heart muscle. Other possible damages are burns due to the electric energy vaporizing the water inside the cells, and nerve damage caused by excessive current through the nerves.
Answer:
0.9
Explanation:
h = 400 mm, h' = 325 mm
Let the coefficient of restitution be e.
h' = e^2 x h
325 = e^2 x 400
e^2 = 0.8125
e = 0.9
Answer:
2.083 V.
Explanation:
Stopping potential is the potential that is required to stop the current to zero . This potential is applied externally to oppose the potential created by the photoelectric effect . It gives the measure the photoelectric potential being generated .
Here current drops to 25 μA to 19 μA by a potential of 500mV
Change in current
= 25 - 19 = 6 μA
Voltage requirement for unit reduction in current
= 500 / 6 μA
To reduce current 0f 25 μA
requirement of V = (500 / 6 ) x 25 = 2083.33 mV = 2.083 V.
Answer:
C
Explanation:
- Let acceleration due to gravity @ massive planet be a = 30 m/s^2
- Let acceleration due to gravity @ earth be g = 30 m/s^2
Solution:
- The average time taken for the ball to cover a distance h from chin to ground with acceleration a on massive planet is:
t = v / a
t = v / 30
- The average time taken for the ball to cover a distance h from chin to ground with acceleration g on earth is:
t = v / g
t = v / 9.81
- Hence, we can see the average time taken by the ball on massive planet is less than that on earth to reach back to its initial position. Hence, option C
Answer:
the rates of rock formation are similar. i could be wrong tho.....
Explanation: