Answer: i think is V=4.29m3
Step-by-step explanation:
Volume of Rectangular Prism:V = lwh
Answer:
a. E(x) = 3.730
b. c = 3.8475
c. 0.4308
Step-by-step explanation:
a.
Given
0 x < 3
F(x) = (x-3)/1.13, 3 < x < 4.13
1 x > 4.13
Calculating E(x)
First, we'll calculate the pdf, f(x).
f(x) is the derivative of F(x)
So, if F(x) = (x-3)/1.13
f(x) = F'(x) = 1/1.13, 3 < x < 4.13
E(x) is the integral of xf(x)
xf(x) = x * 1/1.3 = x/1.3
Integrating x/1.3
E(x) = x²/(2*1.13)
E(x) = x²/2.26 , 3 < x < 4.13
E(x) = (4.13²-3²)/2.16
E(x) = 3.730046296296296
E(x) = 3.730 (approximated)
b.
What is the value c such that P(X < c) = 0.75
First, we'll solve F(c)
F(c) = P(x<c)
F(c) = (c-3)/1.13= 0.75
c - 3 = 1.13 * 0.75
c - 3 = 0.8475
c = 3 + 0.8475
c = 3.8475
c.
What is the probability that X falls within 0.28 minutes of its mean?
Here we'll solve for
P(3.73 - 0.28 < X < 3.73 + 0.28)
= F(3.73 + 0.28) - F(3.73 + 0.28)
= 2*0.28/1.3 = 0.430769
= 0.4308 -- Approximated
Answer:
D
Step-by-step explanation:
Solution:-
The standard sinusoidal waveform defined over the domain [ 0 , 2π ] is given as:
f ( x ) = sin ( w*x ± k ) ± b
Where,
w: The frequency of the cycle
k: The phase difference
b: The vertical shift of center line from origin
We are given that the function completes 2 cycles over the domain of [ 0 , 2π ]. The number of cycles of a sinusoidal wave is given by the frequency parameter ( w ).
We will plug in w = 2. No information is given regarding the phase difference ( k ) and the position of waveform from the origin. So we can set these parameters to zero. k = b = 0.
The resulting sinusoidal waveform can be expressed as:
f ( x ) = sin ( 2x ) ... Answer
Answer:
point symmetry if no symmetry isn't an option as it looks grayed out and not clickable