1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
deff fn [24]
4 years ago
9

What is the connection between the air fuel ratio and an engine running rich/poor? please give clear examples and full sentances

.
Engineering
1 answer:
gavmur [86]4 years ago
5 0

Explanation:

Air fuel ratio:

 Air fuel ratio is the ratio of mass of air to the mass of fuel.So we can say that

Air\ fuel\ ratio=\dfrac{mass\ of\ air}{mass\ of\ fuel}

As we know that fuel burn in the presence of air that is why we have to maintain a proper amount of air fuel ratio.

When we need more power then we have supply more fuel and to burn this fuel ,require a specified amount of air.So for different loading condition of engine different air fuel ratio is required.

When air is less and fuel is more then it is called rich air fuel ratio .when air is more and fuel is less then it is called poor air fuel ratio.

You might be interested in
A machine raises 20kg of water through a height of 50m in 10secs. What is the power of the machine.​
Tomtit [17]

Answer:

hhahhhwghwhwhwhwjwnwjnnnnwnwwnw

Explanation:

jwkwkkwoiwiwiwiwiwowwiwowowiiiiwuuwuwgeevehehsvhsvwhbhhehehwgjjwhwhjwjqwjjuuuwi####!\\\\e

5 0
3 years ago
An inductor has a 50.0-Ω reactance when connected to a 60.0-Hz source. The inductor is removed and then connected to a 45.0-Hz s
nignag [31]

Given:

X_{L} = 50.0 \ohm

frequency, f = 60.0 Hz

frequency, f' = 45.0 Hz

V_rms} = 85.0 V

Solution:

To calculate max current in inductor, I_{L(max):

At f = 60.0 Hz

X_{L} = 2\pi fL

50.0 = 2\pi\times 60.0\times L

L = 0.1326 H

Now, reactance X_{L} at f' = 45.0 Hz:

X'_{L} = 2\pi f'L

X'_{L} = 2\pi\times 45.0\times 0.13263 = 37.5\ohm

Now, I_{L(max) is given by:

I_{L(max) = \sqrt {\frac{2V_{rms}}{X'_{L}}}

I_{L(max) = \sqrt {\frac{2\times 85.0}{37.5}} = 2.13 A

Therefore,  max current in the inductor, I_{L(max) = 2.13 A

7 0
3 years ago
A container filled with a sample of an ideal gas at the pressure of 150 Kpa. The gas is compressed isothermally to one-third of
lyudmila [28]

Answer: c) 450 kPa

Explanation:

Boyle's Law: This law states that pressure is inversely proportional to the volume of the gas at constant temperature and number of moles.

P\propto \frac{1}{V}     (At constant temperature and number of moles)

P_1V_1=P_2V_2  

where,

P_1 = initial pressure of gas  = 150 kPa

P_2 = final pressure of gas  = ?

V_1 = initial volume of gas   = v L

V_2 = final volume of gas  = \frac{v}{3}L

150\times v=P_2\times \frac{v}{3}  

P_2=450kPa

Therefore, the new pressure of the gas will be 450 kPa.

7 0
4 years ago
Railroad tracks made of 1025 steel are to be laid during the time of year when the temperature averages 4C (40F). Of a joint spa
DENIUS [597]

Answer:

41.5° C

Explanation:

Given data :

1025 steel

Temperature = 4°C

allowed joint space = 5.4 mm

length of rails = 11.9 m

<u>Determine the highest possible temperature </u>

coefficient of thermal expansion ( ∝ ) = 12.1 * 10^-6 /°C

Applying thermal strain ( Δl / l )  = ∝ * ΔT

                                    ( 5.4 * 10^-3 / 11.9 )  = 12.1 * 10^-6 * ( T2 - 4 )

∴  ( T2 - 4 ) =  ( 5.4 * 10^-3 / 11.9 ) / 12.1 * 10^-6

hence : T2 = 41.5°C

8 0
3 years ago
A tensile test was operated to test some important mechanical properties. The specimen has a gage length = 1.8 in and diameter =
oee [108]

Answer:

a) 60000 psi

b) 1.11*10^6 psi

c) 112000 psi

d) 30.5%

e) 30%

Explanation:

The yield strength is the load applied when yielding behind divided by the section.

yield strength = Fyield / A

A = π/4 * D^2

A = 0.5 in^2

ys = Fy * A

y2 = 30000 * 0.5 = 60000 psi

The modulus of elasticity (E) is a material property that is related to the object property of stiffness (k).

k = E * L0 / A

And the stiffness is related to change of length:

Δx = F / k

Then:

Δx = F * A / (E * L0)

E = F * A / (Δx * L0)

When yielding began (approximately the end of the proportional peroid) the force was of 30000 lb and the change of length was

Δx = L - L0 = 1.8075 - 1.8 = 0.0075

Then:

E = 30000 * 0.5 / (0.0075 * 1.8) = 1.11*10^6 psi

Tensile strength is the strees at which the material breaks.

The maximum load was 56050 lb, so:

ts = 56050 / 0.5 = 112000 psi

The percent elongation is calculated as:

e = 100 * (L / L0)

e = 100 * (2.35 / 1.8 - 1) = 30.5 %

If it necked with and area of 0.35 in^2 the precent reduction in area was:

100 * (1 - A / A0)

100 * (1 - 0.35 / 0.5) = 30%

5 0
3 years ago
Other questions:
  • If the contact surface between the 20-kg block and the ground is smooth, determine the power of force F when t = 4 s. Initially,
    14·1 answer
  • The elementary liquid-phase series reaction
    11·1 answer
  • Oil (SAE 30) at 15.6 oC flows steadily between fixed, horizontal, parallel plates. The pressure drop per unit length along the c
    6·1 answer
  • Part A What is the correct expression of the internal torque in segment AB? A shaft is fixed at A. A clockwise distributed torqu
    6·1 answer
  • In science, a force is a push or a pull.<br> is it true or false ?
    5·1 answer
  • Why did fprtmiu78t7ty87uhyu
    12·1 answer
  • Make a sketch of a simple mechanically expanded brake and indicate the forces ​ ​ acting on the leading shoe when the brake is a
    10·1 answer
  • If my current directory is ‘AR’ write the path for my current directory
    5·1 answer
  • Should i show my face?
    8·2 answers
  • What is the answer of this question please tell me <br><br>dadada please please​
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!